Department of Mathematics , Jazan University ,Saudi Arabia
Lecture note for Math221 -Foundation of Mathematics,
Instructor :Seid Mohammed (Dr)

Semester |,2016/17 academic year.

Introduction. The materials covered on Foundation of Mathematics are set to lay
the basic concepts of mathematical logic that are essential to acquire the skill in
the language and mode of reasoning needed at all levels of undergraduate study
in mathematics.

Contents of the course :

1. Propositional Logic.

2. Basic structure of Sets

3. Relation and mappings

4. Further properties of relation (Equivalence relation ,equivalence classes and
partition of a set)

5. Binary operations (definitions ,properties of binary operations ,Semigroup
.Monoid)



Chapter One. Propositional logic.

The word “logic “ is generally understood as a systematic study of the form of
argument. We shall confine our study to propositional logic, that is, the study of
the logic of declarative sentences

Definition . A Proposition is a sentence (or declarative sentence) that is either
true or false but not both.

Example . The following sentences are propositions :

1. Riyadhis the capital city of Saudi Arabia.

2 Egyptis in Europe.
3. 1+5=6
4. 12-3=38

Sentences 1 and 3 are true whereas 2 and 4 are false.
Example 2. considerer the following sentences.
1.What time is it? 2.read carefully. 3. 2+3. 4. z+2=3 5 z+y=3

Sentences 1, 2. and 3 are not propositions because they are not declarative
sentences. Sentences 4 and 5 are not propositions because they are nether true
nor false.

We say the truth value of a proposition is true, denoted by T, if the proposition
is true and the truth value of a proposition is false , denoted by F, if the
proposition is false. We use the lettersp,q,r,s , .... to represent propositional
variables ,that is ,variables that represent propositions just as we use the letters
X,Y ,Z to represent numerical variables.



The area of logic that deals with propositions is called Propositional logic or
propositional calculus.

Logical operators : We consider how to obtain new proposition from a given
one or more proposition s using logical operators. The main logical operators
are :negation ,and, or , implication and bi-implication. A proposition formed
from existing proposition or propositions using the logical operators is called a
compound proposition. Now we discussed the rules of assigning the truth value
for compound propositions formed using the logical operators. Logical operators
are also called logical connectives.

Definition.(Negation) Let » be a proposition .The negation of » denoted by -y is
the statement :”It is not the case that p”.

The proposition —p is read “not p”. The truth value of the negation of » 7w IS

the opposite of the truth value of ». Thatis :

Rule I. If the truth value p is T then its negation —p is F . If p is F ,its negation
-p isT.

We use a table called truth table to show all possible values that a compound
proposition takes under all possible assignments for the truth value of its
component proposition (s) .

Truth table for the Negation of a proposition

P -p

F

FoT

Example . Write the negation of the following propositions and find their truth
values.

1.2 +4 = 8.



2. Chinais in Asia.

3. Riyadh is the capital city of Saudi Arabia.
4. 3 < 4.

Solution.

1. The negation reads : It isnotthecasethat 2 + 4 =8. In other words
the negation of 2+ 4 =38is “2 +4 = 8".

Since the truth value of 2 +4 =8 is F ,the truth value of its negation
(2 +4 =8.)isT.

2 The negation reads :It is not the case China is in Asia. In other words , the
negation is “Chinais not in Asia”. Since the truth value of “Chinaisin Asia”is T
the truth value of its negation ,”China is notin Asia.” is F.

3. The negation reads :Riyadh is not the capital city of Saudi ; and its truth value
isF .

4.The negation reads : It is not the case 3 < 4 .In other words the negation is the
proposition 3 >4 ;whichisF.

Definition (Conjunction) Let p and ¢ be propositions . The conjunction of » and
¢ denoted by p A ¢ is the proposition “p and ¢”.

Rule Il. The conjunction pAq istrue when both p and ¢ are true and is false
otherwise.

The truth table for p g

p q pPAgQ
T T T
F T F
T F F
F F F




Example Write the conjunction of the proposition p and g and find their truth
value.

1 P :3isgreaterthan2 ; q :Egypt isin Europe.
2.p: RiyadhisacityinSaudi ;g : Jizan university is in Jizan
Solution

1. The conjunctionof pandq, »a q, is the proposition “ 3 is greater than 2 and

Egyptis in Europe”. Since p isT and qis F, the truth value of the proposition

pAq is F.

2..The conjunction p Aq is the proposition “Riyadh is a city in Saudi and Jizan
university isin Jizan”.

Since pisT and ¢ isT by therule for conjunction ,the truth value of paq is
T.

Definition. Let » and ¢ be propositions . The disjunction of » and ¢ denoted by

pV q is the proposition “p or ¢”.

Rule lll. The disjunction pv q is false when both p and ¢ are false and is true

otherwise.

The truth table for pv g is:

P q pVgq
T T T
F T T
T F T
F F F




Example Letp :4isgreaterthan 6 and ¢ :Egyptisin Africa.

Express the disjunction of » and ¢ _pVg  asstatement in English’and

determine its truth value.

Solution. The disjunction of p and ¢ , p v ¢ is the proposition “4 is greater than 6
or Egyptisin Africa”.; Since p isFand ¢ isT by the rule for disjunction pv 4
isT.

Definition. Let pand ¢ be propositions . the conditional statement p — ¢ is the
proposition “If ? then ”

Rule IV. The conditional statement » —ais false when » istrue and g is

false and is true otherwise.

The truth table for the conditional statement p — ¢

b q p—4q
T T T
F T T
T F F
F F T

Remark : In the conditional statement » —¢  » is called the hypothesis and 4

is called the conclusion. Most theorems in mathematics are of the form » — 4.
A conditional statement is also called an implication.

The conditional statement » —¢ is also expressed as

“ o“

“If p then ¢ p implies ¢”

(

ponlyifq¢“

“ o o “

p is sufficient for ¢ ¢ is necessary condition for



Example.
1.Let p:3isgreaterthan2. ¢ :4isgreater than5.
Write the conditional statement p — ¢ and determine its truth value.

Solution .The conditional statement p — ¢ is the proposition “If 3 is greater
than 2 then 4 is greater than 5” . Since pisTand ¢ is F by the rule for
implication, p — ¢ is F.

2. Let p : Washington isin Europe .q : Riyadh is the capital city of Saudi Arabia.

Write the conditional statements in wordsa)p — ¢,b)—p — ¢.,¢)¢g — p,d)—~p — ~¢ and

determine their truth values.

Solution. a) If Washington is in Europe then Riyadh is the capital city of Saudi
Arabia.

b) If Washington is not in Europe i then Riyadh is the capital city of Saudi
Arabia.

c) If Riyadh is the capital city of Saudi Arabia then Washington is in Europe.

d)If Washington is not in Europe then Riyadh is not the capital city of Saudi
Arabia.

Since p is false and ¢ is true we have (a)istrue (b) is True (c) isfalse and (d)
is false.

We consider the Converse , Contrapositive and inverse of a conditional
statement p — q.

a) The conditional statement ¢ — p is called the converse of p —q.
b) The conditional statement -p — —¢ is called the inverse of p — 4.

c) The conditional statement -¢ — —p is called the contrapositive of p — g.



Example .

Write the converse , inverse and contrapositive of the conditional statement
“ Ifitis raining then it is cold”.

Solution . In this conditional statement we have jp: Itisraining and ¢ : Itis
cold. Thus

The converse is “If itis cold then it is raining”.
The inverse is “ If is not raining then it is not cold”.
The contrapositive is “if it is not cold the it is not raining”

Example . Suppose » and ¢ are propositions suchthat ¢ isFand pisT. Find
the truth value of the converse, inverse and contrapositive of p — g.

Solution. Since ¢ isFand pisT ,-¢ is Tand —p isF .Thus
The converse ,q — p isT.
Theinverse, —-p — ¢ is T , and the contrapositive ,—-¢ — -p isF.

Definition . Let p and ¢ be propositions. The bi- conditional statement of
and ¢ denoted by p < ¢ is the proposition “p if and only if ¢”.

Rule 5. The bi-conditional statement p « ¢ is true only when » and ¢ have the
same truth valueand is false otherwise.

The truth table for p — ¢ is;

p q p=yq
T T T
F T F
T F F
F F T

Bi-conditional statements are also called bi-implications.



Remark .p — ¢ is usually expressed as :
“p is a sufficient and necessary condition for ¢”.

“piff ¢”.

Example. Let p: Itis snowing ¢ : Itis cold. Express in English the
statement p < q.

Solution . p < ¢ is the statement “ it is snowing if and only if it is cold “

Example . Let p and ¢ be propositions such that p is T and ¢ is F. Find the truth
value of the following compound proposition.

a)(g—=p)A=qg b)(pVgAq c)(p——q) —q

Solution. a) sinceq —p isTand -¢is T , by the rule for conjunction

(q—p)A-g isT
b) Since pvqisT and ¢ isF , by the rule for conjunction (pv g AqisF.

Exercise

1. Which of the following sentences are propositions? What are the truth value of
those that are propositions?

a. Tunisia is in Europe. . d. Answer the question.

b. Riyadh is the capital city of Saudi Arabia. e. Good morning Ahmed.
c. x+2 = 11. f. Long live the King.
2.What is the negation of each of the following proposition?

a. Ahmed has an iphone. C. Naser is a student in Jazan university
b.2+1 =3 d. 2 isgreaterthan 5.

e.. There is no rain today in jazan



3.Let p and ¢be the propositions:
p : Itis below freezing. ¢ : Itis snowing.

Write the following propositions using » and q and logical connectives.

a. It is below freezing and it is snowing. c. ltissnowing oritis freezing.
b. Itis below freezing and not snowing. d. Itis not freezing and it not
snowing.

e. If itis freezing then it is snowing. f. Itis snowing if and only if it is
freezing.

4.Let » and ¢ be propositions
» : 1 bought a book yesterday. q: 2> 3.
Express each of the following as English sentence.

a.p bpVg cp—q dpAq e.mqg— —p.

5. Determine the truth value of the following conditional statements,
a.lf1+1=2 then 2+2 =5 b.If 1 +1 =3 then 2+2=4

6. State the converse , contrapositive andinverse of each of the following
conditional statements.

a. Ifitsnows to day then | will ski tomorrow.
b.If it rains thenitis cold. C. Ifit snows tonight then | will stay at home.

7. Let p and ¢ be propositions .The Exclusive or of p and ¢ denoted by p @ ¢ is the proposition
that is true when exactly one only one of them is true and is false otherwise . Construct a truth table
for p®gq.
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Truth table for compound propositions.

We show by examples how to use truth table to determine the truth value of a
compound proposition .

Example . Construct the truth table for each of the following compound
propositions.

a) ~(-p) b)pV-q) = (Ag )@= -p)V(p =g dpVgAr)=(@VgA(pVr)
Solution.a) The compound proposition has only one propositional variable ».

Thus the truth tablefor —(-p) consists of first columnfory ,second

column for -p and a third column for —(-p) given by below.

D -p —=(=p)
T F T
F T F

b) The compound proposition involves two propositional variables » and ¢
.and each has two possible values ,T or F. Thus the truth table must have four
rows , the first two columns for p and ¢ the third column for -¢ , the fourth
column for pv—¢ ,the fifth column for p A¢ and last column for the truth

value (pv-¢ = (Arg).

P q —q PV g pAq (pV=9) —(pAg)
T T F T T T
T F T T F F
F T F F F T
F F T T F F

(c) and (d) are left for exercise.

11



Propositional equivalence.

Definition. A compound proposition that is always true no matter the truth
values of the propositional variables that occurs in it is called a tautology.

A compound proposition that is always false is called a contradiction.

We use truth table to show a given compound proposition is either a
tautology or a contradiction .

Example. Show that the following compound proposition s are tautologies.

a)pV-p b(pAp)—=p ¢ (pAq) < (-pVq)

Solution. We use truth table to show that the compound propositions are
tautology

a)

Y4 -p pV-p
F T

F T T

From the third column of the table we see that pv —p is always true . Thus

p Vv -p isatautology.

b) is left for exercise.

c)

P q -p q pAg | “(pAq) —pV g | A(pAg) = (—pV g
T |T |F |F T F F T

T F F T F T T T

F T T F F T T T

F F T T F T T T
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From the last column we see that —(p A ¢) < (-p Vv —¢ is always true hence it is a

tautology.

Example. Show that each of the following compound propositions are
contradictions.

a)pA-p b (pAgA(-pV-g

Solution

p -p pA—p
T F F

F T F

We see that p A —p is always F. hence it is a contradiction.

Definition. We say two compound propositions p and ¢ are equivalent
(Logically equivalent) if and only if p < ¢ is atautology. In this case we write

pP=q.
Thus p =¢ if and only if p and ¢ have the same truth value.

Example . Show the following compound propositions are equivalent.
a)p—q and —-pvgb)~(pAgb)-pVv-ge)=(p —q and pA-g

d)pV(gnr) and (pvaA(pvr).

Solution. We use truth table to show that both have the same truth value.

P q -p AKX
T T F T T
T F F F F
F T T T T
F F T T T

13



From columns three and four of the table we see that both » — ¢ and —pvq
have the same truth values . Hence they are equivalent ,thatis,p —¢=-pvyq.

b)

P q | -p -q PAq —(p A\ q) —p V g
T [T |F [F T F F

T F F T F T T

F T |T F F T T

F F T T F T T

We see from columns six and seven both have the same truth values. Hence they
are equivalent.

(c) and (d) are left for exercise.
List of some logical equivalence

a)p\/qzq\/p PAGQ=qADp (Commutative Law)

pVgVr=pV(gVr)

(PADAT=pA(gAT (Associative Law)

pA(gVr)
pV(gAT)

(pAQV(pAT) PR
(v ) AoV ) (Distributive Law )

-

—

pVg =-pA-

q ¢
De Morgan ‘s Laws
ﬁ(p/\q)zﬁp\/ﬁq( & )

Exercise. Use truth table to show the equivalence of commutative law
distributive law and De Morgan’s law
Quantifiers.

Consider the following sentences involving variables such as :

i) xisgreater thanthree (x > 3) ii) z+y =3 , iii)yis the capital city of
Saudi.iv) y is acity inthe country z.

14



Each of the above sentences have the property that once you specify a particular
value to the variable(s)it becomes a proposition.

For example in (i) if you replace x by 4 the sentence read s : 4 is greater than 3
which is a proposition with truth value T. If you replace x by 2 the sentence
reads : 2 is greater than 3 , which is again a proposition with truth value F.

In (ii) if put x=2 and y=1 , we get 2+1 =3 which is a proposition

{

Now consider the sentence “x is greater than 3” . This sentence has two parts :

The first part Is the variable x , which the subject of the sentence .and the
second part ,the predicate “is greater than 3” , which refers to the property the
subject can have.

If we let the predicate (or the property) “is greater than 3 “ by P and x the
variable then we denote the sentence “xis greater by than 3 “ by P(x) .We
read p(x) as “x has the property p”.

We write p(x) : x is greater than 3.
p(4) : 4 is greater than 3, which is a proposition.

Let P be a certain property. p(x) is called a propositional function of x.Once a
value is assigned to the variable x the sentence p(x) becomes a proposition and
has a truth value.If p(x) is a propositional function the value that the variable x
assumes is called the domain

Example . 1. Let P(x) : x < 3.

What are the truth value of p(4) , P(0) ; p(-1)?
Solution: P(4): 4 <2 whichis false.
P(0) : 0 <2 whichis true
P(-1) : -1 < 2 , which s true.
2.LetP(x,y) :x >y.

Find the truth value s of P(1.2) ; P(3, 2),

15



Solution : P(1,2): 1 > 2 which is false.

P(3,2) : 3 > 2 whichis true.

3. Q(x,y) : xis the capital city of countryy.

Find the truth value of Q( Riyadh , Egypt) . Q( Cairo , Egypt)

Solution : Q(Riyadh , Egypt ): Riyadh is the capital city of Egypt . which is false.

Q( Cairo, Egypt) : Cairo is the capital city of Egypt . True.

Universal and existential quantifiers

e Universal quantifier.
Definition . The universal quantification of p(x) is the statement
“For every x p(x)” (xinthe domain of p(x)).
We denote this statement by “vzp(z)”. We call the symbol v the universal

quantifier.
Thus vzp(z) isread as “for every x p(x)” or “for all x p(x)” .

vz p(z) is true if for every x in the domain p(x)is always true.
vz p(z) is false if there an x for which p(x) is false.
An x for which p(x) is false is called a counter example for vz p(z).

Example Find the truth value vz p(z) where p@z) is :
arx+1>z ba?>>0 ca2®>0 d2z+1=3.(domain consists of all real numbers
Solution . a)Since z+1>=z is true for every real number x , vazp(z) istrue.

b)Since 0=0? >0 isfalse (p(0) isfalse) vzp(z) isfalse.Note x =0 isa

counter example.

c) Since 2? >0 is true for all real numbers , vzp()(Vz(z* >0))is true.

16



d) 224+41=3-2:=2<2=1.Thus 2z+1=3 forall z=1.Hence vzpz) is false.

For example take z=0 weget2x0+1=3, thatis, 1 = 3 ,whichis

false..Hence vz(2z+1=3) isfalse. Here Oisa counter example.

e Existential quantifier.
Definition. The existential quantification of p(z) is the statement
“There exists x in the domain such that p)”.

We denote the statementby 3zp(x). '3' is called existential quantifier.

{

Thus 3zp) isreadas “Thereexists x suchthat px)) “ or “thereis at

least one x such that p)”.
3z p(z) is true if there exist at least one x in the domain such that p(:) is true.

3z p(z) is false if p(z) is false for every x in the domain.

Example .Find the truth value of p(z) where p@z) is :

azx>3 baz’<0 c2r+1=3 ; X is a real number.

Solution. a. Since 4isareal numberand 4 >3istrue , p4) is true .Hence

3z p(z) 1S true.
b. Since 2* <o isforall x , 322> <0) isfalse, thatis 3zp@) is false.

c. Solvingforxweget 224+1=3-2r=2<2z=1.Thus 2z+1=3 istrueif x =1.

,thatis, p(1) istrue. - 3z@2z+1=3) istrue ,thatis (3zpx) is true..

Introduction to Proof.

In mathematics a theorem is statement that can be shown to be true.

17



A proof of a theorem is an argument that establishes the truth of the theorem.

”

Most theorems in mathematics are of the form » — ¢ , thatis,, “If » then 4.

There are three basic methods of proof :
e Direct proof.
e Indirect proof:
Proof by contrapositive
Proof bycontradiction

Direct proof: Adirect proofis usedto show p— g true whenever p is
true. Thus in a direct proof we assume » is true and use axioms ,definitions
and previously proven theorems to show that ¢ must be true.
Note thatin p —¢ , p isthe hypothesis and ¢ isthe conclusion.
Thus in a direct proof we assume the hypothesis is true and show that the
conclusion is true.
Before we give examples we give the following definitions.
Definition . i) An integer » is called even if n» =2m for some integer m.

ii) Aninteger » iscalled oddif »=2m+1 for some integer m.

An integer is either odd or even but not both.

“

Example. Give a direct proof to the theorem
odd.”

if nis an odd integer then »2.is

Solution. We assume the statement » is an odd integer is true .we want to
show the statement »> is odd is true.
Since n» is odd by definition »=2m+1 for some integer m. Thus

n? =@2m+1? =4m? +4m +1=22m> +2m) +1=2k+1 where k=2m> +2m isan

integer. Hence by definition of odd integer »* is an odd integer.

18



. The theorem is true.
Definition . An integer » is said to be a perfect square if » = 4> for some integer

Qa .

Examplel .The integers 1,4,9,16,--- are perfect squares since,

Example2 . Give a direct proof : If » and » are perfect squares then their
product mn is also a perfect square.

Solution . We assume = and » are perfect squares. To show mn is a perfect
square.

By definition perfect square m =a4> and »=1»*. We have

mn = a*b?® = (ab? =& Wwhere c¢=ab isan integer.

-.mn 1S a perfect square.

Indirect proof.

Consider atheorem of the form » — ¢q.sometimes the direct proof may not
helpful to prove the theorem. Proofs of theorem that does not start with
hypothesis and end with the conclusion is called indirect proof.

A useful type of indirect proof is proof by contraposition. The proof by
contraposition make use of the fact that (» — ¢) = (~¢ — —p). To show a theorem
of the form p — ¢ istrue by proof by contraposition involves showing -¢ — —p
is true . Thus in the proof by contraposition we assume -¢ is true and show
that —p.Thatis, we use direct proof to show —¢ — —p.

Example 3 Use proof by contraposition to prove the theorem “If » is an integer
and 3n+2 isodd then » isodd”

Proof. We have to prove the statement : If nis even then 3. +2 is even using
direct proof.

Assume n is even. To show 3n +2 is even.
Since » iseven,n =2m. Thus
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3n 42 =3@2m)+2=6m+2=23m+1) =2k , for some integer k. By definition of even
integer 3n+2 is even.

. The theorem is proved.

Example . Prove that if » isanintegerand »?> is odd then » is odd.

Proof. We use proof by contraposition. Assume » is even and show »? is even.
Since n is even , by definition of even n =2m for some integer m. Thus

n? = @2m)® = 4m? = 2(2m?) = 2k where & =2m?> , whichis an integer.

-.n? iseven.

Proof by contradiction.

Suppose we want to prove that a given statement is true. The proof by
contradiction involves assuming that p is false, thatis, we assume -p istrue
,we arrive at a statement which contradicts known facts or proven theorem ,or
arrive at a false statement. This we conclude -p is false and hence » is true.

Definition A real number xis called rational numberif =", for some
n

integers m.,n and n = 0.

A real number which is not a rational number is called an irrational number
A real number is either rational or irrational but not both.
Example .Prove that v2 is anir rational number.

Proof. Suppose 2 is not an irrational number ,thatis,«2 is a rational number.

By definition of rational number V2 = ™ where m and are integersand n =0
n

having no common factor other than 1. We have

Thus »? is even and therefore m is even. Let m =2k for some integer &.
Using (1) we have

20



o =m — 2n® = 2k =4k* — n> =2k .Thus »? Iseven. - n iseven. Hence both

m and » are even. Thatis 2isacommon factor of » and ». Thisis
contradiction since the only common factor of = and » is 1. We conclude 2 is
not a rational number ,thatis,v2 is an irrational number,

Remark.1.Sometimes we use the method of proof by contradiction to showp — ¢
istrue. Since (p — q)=(-pVq) to proof p — ¢ istrue we show the statement
-p V¢ is true .Thus we can use proof by contradiction to show -pvq istrue. So
we assume —(—p V ¢) is true ,thatis, p A -q) istrue .Therefore to prove p — ¢ is
true by contradiction we must assume p is true and —¢ is true and arrive at
contradiction.

Example . Give proof by contradiction of the theorem “If 3n+2 isoddthenn is
odd”.

Solution. Let P:3n+2isodd and q: » isodd. We assume 3n+2 is odd true (
pistrue)and = isevenistrue (-¢) is true.

Since n iseven , n =2k for some integer k. Thus
3n+2=302k)+2=6k+2=203k+1)=2m Wwhere m =3k+1 whichisan integer.
Hence 3n+2 iseven, thisis a contradiction to the fact that 3» +2 is odd.

. The theorem is proved .

2. To prove a theorem of the form p < ¢ (p ifandonlyif ¢ ).

Since p=qg=(p—q Alg— p),toprove p < ¢ istrue we needto prove i) p — ¢ is

true andii) ¢ — p is true.

Example. Prove the following theorem: An integer » is even if and only if»? is

even.

Proof. i) we prove :(=)If » iseven then »?iseven. We use direct proof ,that

is,we assume » is even and show »? is even.
Since » iseven, n=2m for some integer » (by definition of even)

21



Thus »n? = 2m)? = 4m?> = 22m?) =2k , Where & =2m? , an integer.
Therefore by definition of even, »? is even.

ii) To prove : (<) If n2is even then » is even. We use proof by contrapositions that

is, we assume » is odd is true and show »? is odd.
Since » isodd n=2m+1 for some integer » (by definition of odd). Thus

n? =2m+1? =4m® +4m +1=22m> +2m)+1=2k +1 , where & =2m?>+2m , an

integer,

Therefore »? is odd integer.

It follows from (i) and (ii) the theorem is proved .
Exercise

1. Let p(z):2=2> with domain the integers. Find the truth value of the following

propositions.
a.p(0) b.p(l) ecp?2) dp(-1) e3Jzplz) [ VYrplx).

2. Determine the truth value of the following propositions if the domain for the
variables consists of all real numbers.

a.dz(@® = —1) b3z(@' <2?) cVa(—2)? =2?) dVez > 1)
3.Let Q(z);z +1 > 2z , X an integer. Find the truth value
a.QO0) bQ-1) Q1) dVrQx) eIrQx) fVYr-Q).

4.Use direct proof to show that

a. if m and » are odd integers their sum m +n is even.

b. If » isoddintegerthen »>+1 iseven.

c.if m and » are odd integers their product m» is odd.
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5. Show that if m and » areintegers and »? +5 is odd then niseven using
a) a proof by contraposition  b. a proof by contradiction.

6, Use proof by contraposition to show the following statements;

a. If sn+2 isoddthen » isodd.

b. If (n+1? is odd then » iseven.

7.Prove the theorem : An integer » is odd if and only if »? is odd.

Chapter 2.Basic structure of sets.

We regard a set as a collections of objects. The objects of a set are called
elements.

We denote sets by capital letters and elements by small letters .We write z ¢ 4

o

if xis an element of A. Thus “z e A” isread “xisanelementof A“or “x

belongs to A” or “ x is a member of A”. If x is not an element of A, we write z ¢ A.

There are several ways to describe a set .

1.Listing method Roster method. If the elements of a set can be listed , for
example the elements of aset Aareonly a, b, cand d then we write

A = {a,b,c, d}.Thatis ,we list the elements of the set and enclosed by braces.
This way of describing a set is called roster method.

Example. The set A of all natural numbers less than 7 can be writtenas A = { 1
)2)3I4ISI 6}‘
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The set B of all positive odd integers less than 10 can be written as
B={1,3,5,7,9}

The roster method is also used to describe a set without listing all of its elements
if the elements have some pattern. In this case we list some members of the set
followed by three dots “-..” and then enclose by braces.

Example. The set of all positive integers less 100 can be written as
A={1,2,3, ... ,99}.

If the elements of a set cannot be listed but have certain pattern then we write
a few elements followed by three dots and enclosed by braces.

Example The set N of all natural numbers can be written as

N= {1,2,3, - }L

The set z- of all negative integers can be writtenas z= = {.. , -3 ,-2 ,-1}
The set of integersz = { ..., -2 ,-1,0,1,2, ..}

The set of all odd positive integers 0 ={1,3,5,--}

Set Builder method : If the elements of set A satisfy certain property p, that
is , if the elements of set A are those which have the property p, then we write

A = {x:p(x) } weread asthe setof all xsuch that p(x).

The elements of A are those for which p(x) is true.

This way of describing a set is called set builder method.

Example. The set of O all odd integers can be written

O ={ x: xisan odd integer }. Here the property pis “being an odd integer”.
4¢ 0 since 4is not an odd integer, thatis, p(4)is false.

Example .List the elements of the following set.
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a. A= {x: xis a positive integer less 10}
b.B ={x:x is a perfect square integer less 17}

c. C ={x: xisanintegerand 2x+3 =5.}

Solution
a){1,2,3, ...,10} b) {1 ,4,9,16} c) {1}
Equality of sets and subsets.

Definition .Two sets A and B are equal written A = B if and only they the
same elements.

Examplelf A= {2 ,4.1} and B = {1,2, 4} then A are B. aresince
they the same elements .

Thus A = B.
Note the order in which the elements are listed does not matter.

Example Thesets {1,23,}and {1,1,2,2,3,3,3,} are equal since they have the
same elements.

A set does not changed If its elements are listed more than once.
Remark. we shall use the following sets

N={1,2,3,--} The set of natural numbers

Z={--3,-2,-1,0,1,2,3--} ,thesetofintegers
0={Z:mezZnez,n=0}, the setof rational numbers
n

R = the set of real numbers.

Two special set : The Empty set and the Universal set.
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A set which does not any element is called the Empty set or null set and is
denoted by @ or { }.

Example .The set A= {x:xis anintegerand x = x} has no element.Thus A =

g .

The universal set denoted by u is the set which contains all elements under
consideration for a certain discussion. If U is the universal set and A is any set
then every element in A must be in u.

Note. Sets may contain other sets.

Example. Let 4 = {a, {8}, ¢, {¢}} .Find the truth value of the following statemnets.
ac€A i)beA d){b}e A w{ceAd viceA wvi){a} €A.

Solution. i) T ii) F iii)T iv) T v) T wvi) F

Venn diagram :

Sets can be represented graphically using diagrams called Venn diagrams.In Venn
diagrams the universal set is represented by rectangles ,inside the rectangle
circles or other figures are used to represent sets.

Example. Let U =the set of integers . Draw a Venn diagram that represents the set
A = he set of all positive integers less than 5.

D
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Subset

Definition .The set 4 is a subset of the set B written 4 c B if and only if every
element of 4is also an element of B.

Thus ACB—Vz(zeA—zeB) istrue.

Note . To show that 4 is a subset of B show that if x belongs to4 then x also
belongs to B

To show that 4 is not a subset of B find a single z e 4 such that = ¢ B. Such
element x is call counter example.

Example 1.If A={a,b,¢,2,3} and B={1,a,4,b,5, ¢,2,3} then 4c B since each

element of 4 isalsoanelementof B . But B isnot asubsetof 4 sincei1enB
and 1¢ A (1isacounter example)

2. If 4 isthe set of positive integers less than 100 then A c z.

Theorem. Foreveryset Si)ocCs i) S C S.

Proof. i) Suppose o is not asubset s .Then thereis asingle element z ¢ &
such thatz ¢ 5. But this is a contradiction since @ has no member. .o Cs.

i) If x belongsto s then x belongs s istrue.Thus scs.

Example. Let 5 = {a, b} . List all subsets of the set s = {a,b}.
Solution. @ c 5,5 C S,{a} CS,{b} C S are the subsets of 5.

Proper subset :If an 4c B and 4= B we say 4 isa proper subset of B and
we write A c B.

Thus ac B if andonlyif va(zed—2zeB) AFz(xreBArzgA).

Note. Foranyset 5,5 c s isfalse.

27



Example. Let 4={a,b,¢s and B={a,b,c,d,e¢}.Then Ac B since 4c B and

A= DB.

Example. Let 5 = {a,0}. List all proper subsets of the set s = {a,0}.

Solution. @ c s,,{a} c S, {b} c S are the only proper subsets of 5.

Note. To show two sets 4 and B are equal we must show 4c B and Bc A.
Example Let 4={z:z is eveninteger} and

B = {z:z isthe sum of two odd integers}

Show that 4= B.

Solution. We must show i) Ac B and ii)B c A.

i). To show 4 c B.

re€A—-z=2m meZL
—z=02m-1)+1
—xz €D

ACB

ii) Toshow BcC 4.

re€B—-z=02m+1)+2n+1), n,meZ
—z=2m+n+1)
—x=2k Jk=m+n+1€Z
—z€d

BCA

Thus 4 = B.

Example. Let
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A={1,{1},{o}, {1}}.{2.{1}}, {{11}}.Determine the truth value of the following

statements.

MU ed,i2eAd,i)oecd i){{1}CA v{2{1})ed v)lo)CA.

Solution. i) T ii) F iii) F iv) T v) T vi) F.

Power set.

Definition . Given a set s , the power set of s denoted by ¢(9) is the set of all
subsets of the set 5.

Note that always the o and 5 belongto o(S)
Example. s ={a,o,{1}}. Find ¢@9).

Solution. We want all subsets of s .

0(S) = {2, 5. {a}, {&} . {{}} {a, 2}, {a . {1}} {2, {1}}}

Size of a set.

Definition. Let S be a set. If there are exactly n distinct elements in S wheren s
a nonnegative integer, we say S is finite and we call n the cardinality of S .The

cardinality of S is denoted by |5]-

Example Let S ={1,a,b,c,a}. The distinct elementsof Sare 1,a,b ,c. ThusS is

finite and |s| =4.
|z| =0 ,since the & has no element.
Definition. A set is said to be infinite if it is not finite.

Example .The set of positive integers is infinite
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Note .If aset § has n elements then |p(s)| = 2".

Set Operations.

Definition. Let 4 and B be sets. The union of the sets 4 and B denoted by
AU B is the set that contains those elements thatarein 4 or in B or in both.

Thus AUB.={z:x€ AVz € B} .

Example. Let A={1, 3,5} and B={1,2,3,5,4.Theunionof 4 and B is the set
AUB=1{1,2,34,5}.

Example Let A={z:2<5Vvaz>9U=1{1,23 - 11}. List the elements of A.

Solution. for zeU,z<5vz>9 istrueifandonlyif x < 5istrue or x > 9is

true . Thus

A={z:2 <5 U{z:z>9}={1,2,3,4}U{10,11} ={1,2,3,4,10,11} .

Remark :The union operation "u" on sets is the counter part of the logical
connective "v".

Definition. Let 4 and B be sets. The intersection of the sets 4 and B denoted
by AnB,isthe set containing those elements in both 4 and B. Thus

ANB={z:x€ ANx € B}.

Remark: The intersection operation "n" on sets is the counter part of the logical
connective "A".

Example.Let 4={1,35¢ B=1{1,2,3} .Then theintersectionof 4 and B,
ANB={1,35}n{1,2,3} ={1,3}.

Definition. Two sets are disjoint if their intersection is the empty set.
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Example. Let A={1,3,5,7,9}, B=1{2,4,6,84 .Because AnB=o, A and B are

disjoint sets.

Note If 4 and B are finite sets then |AuB|=|4|+|B|-|ANnB|.

Definition. Let 4 and B be sets. The difference of 4 and B denoted by 4- B
, is the set containing those elements that arein 4 but notin B.

A—B={zx:z2€ ANz & B}

We also denote 4— B by 4\ B.
The difference of 4and B is also called the complement of B with respectto 4.

Example. The difference of the sets {1.3,5} and {1,2,3}is {5}, thatis

{1,3,5t—{1,2,3} ={5} The difference of the sets{1,2.3} and {1,3 ,5}, that is.

{1,2,3}—{1,3.5} ={2} .Thisshowsthatingeneral 4—B=B—-4.

Definition. Let U be the universal set .The complement of the set 4 denoted by
A is the complement of 4 with respectto U. Therefore A=v -4 .

zeA ifandonlyif z¢ 4.

A=U—-A={zcU:z ¢ A}.

Example .Let v ={1,2,---,90¢ .Find the complement of the set 4 if
i) A={1,2,3,-11}. i) A={2,4,6,---90}

Solution .i) A=vU-{1,2,3,6,---11} = {12,13,14, --- 90} .

i) A=U—-{2,4,6,--,90} ={1,3.5,--,99} .

Example Provethat 4—B=4nB.

Solution.

We mustshow i) A-BCANB &) ANBCA-B.
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Nz€A—B—zecAANz ¢ B (by definition of difference of sets)

—zecAnze B (definition of complement)
—z€ANB (Definition of intersection)
A-BCANB.

.i)r€e ANB—zec ANzeB—zc ANz ¢ B—zec(A—B). ThuSANBC A—B.

Therefore 4—B=4nB.

Exercise
1. List the members of the following sets.
a. {x :x is areal number such that z? =1}
b. {x/ xis a positive integer less than 12 }.
c. {x/ xis the square of an integer and x < 100 }
d. {x:x is aninteger such thats* =2}
2let A = {0,2,46,8 B=1{0,3,2,1,4,5,6}
c =1{4,,6,7,8,9,10}
Find
a.AUB b.BNC ¢A—B dAN(BUC) e (ANB)UANC) f(A—B)N(C—B)
3. let U={1,2,3,---,10} be the universal set. List the elements of the following sets.

a{r:x<6Ax>3} bi{r:2°<7vVa>3} c{r/2*>—Tr+12=0and v < 5}

4. Which of the following sets contain 2 as an element of these sets.

a){z € R:is an integer greater than 1 }
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b. {z € R:is the square of an integer}

c.{2,{2}} d.{{2},{{2}}} e {{2}.{2, {2}} f{{2}}

5.Determine which of the of following statement is true or false.

a. 0e@ b.oe{0} c{o} C {o} d{o}c {0}

e. gef{o} f{o}e{o} g oe {o,{g}} h oc {g ,{s}}L
6 Find the power set of the following sets .

a. o b. { 1} c. (1,a} d. {o,{1} 1}

Properties of union and intersection

Theorem The set operations union and intersection have the following
properties:

1. AUB=BUA iANB=BNA (Commutative property)

(Associative Property)

(Distributive property)

4. AUB=AnB, AnB=AuUB De Morgan’s law for sets.

Proof. The proofs depend on the properties of logical equivalence and the
definitions of union and intersection.

l. AUB={z:zcAvzeB={z:2e€Bvzec A =BUA (since pvg=qvp andthe

definition of union offsets.)

2

r€ AUBUC) —wz €AV e(BUC)—zeAV(@xeBVzel)—(xeAVeeB)VzelC <z e(AUB)
(since pv(gvr)=(pVvg Vvr and the definition of union)
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Therefore AuBUOC)=AUBUC.

3. Weshow i. AUBNC)C(AUBNAUC) and ii. (AUB N(AUC)CAU(BNCQ)
i. ze AUBNC)—zcAvze(BnC) (Definition of “U”

—~zeAvV@eBArzeC) (Definition of “ n”
—~@eAvzeBAzecAvzel) (pVgrr=mV)A(pVr)

—ze(AUB Az € (AUCQ) (Definition of “U”)

—z€(AUB)N(AUCQ) (Definition of intersection)

Therefore AuBnC)cAuBN(AuC) ( Definition of subset)
ii. left for exercise.
4.z c AUB— ¢ AUB (definition of complement)
—~z¢ Anz ¢ B (definition of “U”
—~zeAnzeB (definition of complement)
—~zeAnB (Definition of intersection)
AUB=AnB (byequality of sets since (p = q==(p — ) A(¢ — 1)
Exercise.

1. Let A={z:2=3m,mez and B={z:z=6m,mecz.Showthat Bc 4.

2. Show that forsets 4 and B . U is the universal set.

)ANBCA i) ANB=AUB #i)AUA=U.
3. Findsets 4 and B if A—-B={1,5,7,88 B—A={2,100 ANB={3,6,9}.

4. Use De-Morgan’s law for sets to show A4uBuc=4nBnC.
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5. Showthat AnBUC)=UNBUMANC) .

6. Letu ={1,2,---,10} be the universal set. List the elements of the following sets.

a) A={z:2<5Vz>6}b)B={z:2>2Az<T7}

Generalized Union and Intersection.

Since union and intersection of sets satisfy associative property ,the sets AuBuC
and AnBnc are well defined . Thus AuBuUC contains those elements that are
in at least one of the sets A,Band ¢ and AnBncC contains those elements that

are in all the sets 4,Band C.

Example. Let 4=1{0,2,4,6,88 B=1{0,2,3,4 C={0,3,6,9}. Whatare AuBuC and

ANBNC?
Solution AuBUC ={0,1,2,3,4,6,8,9}.
ANBNC ={0}.

Let 4,,4,,4,,--,4 be nsets.Their union and intersection are written as follows

AUAUAU---UA = UAi ={z/xc A forsomei,i=12,-,n}

i=1

ANANAN-NA =4 = {z /x €A foreachi,i=1,2,-- n}.
i=1

Example For i=1,2,3..- let

4 n n 4
Find o) 4,44 b JA4 oN4d Us oA HIUA
i =1 =3 i=1 =2
Solution. a) 4 ={1,2,3,-} A4 ={2,3,4-} 4, ={34,5,-}.
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4 4

DA =4 UAUAUA =A YA =A4NANANA =A

i=1 i=1

n

d) UAZ.:AJUA4UA5 U-UA = A nAi:/g;ﬂA4ﬁA5 n-—NA =4

n n *
=3 i=3

f) OAi,AQmASmAzLAZ

Suppose 4, ,4,,4,,+,4 ,--, are sets we define

A UAUA U JUA U-- = UAZ. ={z /2 € A for atleastonei,i=1,2,3,---,}
i=1

A NANA N NA Ny = mAi ={z /2 € A foreachi,i=123,"}.
i=1

Example. Let 4 ={1,2,3,-,i},i=1,2,3,-

Flnd a) AlaAQaAS’AH)O b)Al UAQUAS UAIOO

100 100 0 o0

o Us N4 aUs HNA
Solution.a) 4 ={1} A4 ={.20 A ={1,2,3} 4, ={1,2,3,--,100} .

D)A UA UA UA, = {1} U{1,2} U{1,2,3} U{1,2,3,---,100} = A,

100 100

c) UAi = Ay d) nAi =4 ={1}
i=1 i=1
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Chapter Three.  Relation and Mappings
Cartesian product

Definition .Let 4 agnd B be sets . The Cartesian product of 4 and B, denoted by

Ax B ,is the set of all ordered pairs (a,b) , where a € 4 and » € B. Hence

Ax B ={(a,b):a € ANb € B}.

Note in the order pair («,b) , we call a the first element and b the second
element.

Example .Let 4 be the set of all students in the Department of Mathematics at
Jazan University and B the set of all courses offered by the Department of
mathematics at Jazan University. What is the Cartesian product 4x B?

Solution .The Cartesian product 4 x B consists of the ordered pairs of the form
(a,b) Where a is a student in the Department of Mathematics and b a course

offered by the Department of Mathematics.

Example. Let 4={1,2} B={a,b,c} . Find the Cartesian product s 4xB and

BxA.
Solution. The Cartesian product 4x B = {(1,a),(1,),(1,¢),(2,a),(2,b) ,(2,¢)}
BxA={(a,1),(2),0,1),0,2),(c1),(c2)}

We seethat AxB=BxA.
The Cartesian product of more two sets can be defined similarly.

Definition. Let 4 ,4,,---,4 be n sets .The Cartesian product of the sets 4 ,4,,--.4

, denoted by
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A XA XX A is the set of ordered n -tuples (a,,a,,...,a,)  Where

n 7'n

a, € A fori:1,2,...,n.That is,
A <A x-xA ={(a,ay,...,a,) :a, € A fori=12,..n}.

We use the notation 4? to denote A4x 4 the Cartesian product of the set 4 with
itself.

Example. What is the Cartesian product 4x Bx¢c where
A=1{0,1} B={1,2} and C=1{0,1,2}7

Solution. The Cartesian product AxBxC consists of all ordered triples (a,b,¢)

where a € A,b € B andc € C. Hence

Ax BxC = {(0,1,0),(0,1,1),(0,1,2}),(0,2,0) .(0,2,1),(0,2,2)
(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1) ,(1,2,2)}

Definition. A subset R of the Cartesian product 4x B is called a relation from
Ato B.

Thus R is a relation from 4t B if and only if R c 4xB.The elements of the

relation R are ordered pairs ,where the first element belongs to 4 and the
second element belongs to B.

Example . The set R = {(a,2),(,3),(a,1),(c,2)} is a relation from the set {a,b,c,d} toO
the set{1,2,3,4} since R C{a,b,c,d}x{1,2,3,4}.

Definition .A relation from a set 4 to itself is called a relation on A. Thatis R s
arelation on 4 ifandonlyif rRcaxA.

Example Let r be a relation on the set 4 = {0,1,2,3} having the property that
(a,b) e R ifandonlyif a <b. That is R={(a,b):a <b,wherea € ANb € A}.

a) WriteTorF: @21 eR i)(0,2) eR ii)(l,4).
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b) What are the ordered pairs of r?
Solution. i) F ii) T iii) F
R =1{(0,2),(0,2)},{0,3),(1,1) (1.2),(1,3),(2,2) ,(2,3) ,(3,3)} .

Example. LetA={0,1,2} B=1{0,2}.Let R={(a,b):a <b} be the relation from A to

B..What are the ordered pairs of R.
Solution The ordered pair «.» € Rifandonlyif ac A , be B and a <b. Thus

R = {(072) 7(172)}

Functions.

Definition .Let 4 and B be nonempty sets. A function from 4 to B is arule that
assigns exactly one element of B to each element of 4. We write fa) =10 if b is

the unique element of B assigned by the function to the element . of 4.
If  isafunctionfrom 4 to B, we write f:4— B.

Remark : Functions are sometimes also called mappings or transformations.
A function f:4 — B can also be defined in terms of a relation from 4 to B.

As follows: A relation from 4 to B that contains one and only one ordered
pair (a,b) for every element « € 4 defines a functionf from 4 to B. This

function is defined by setting f(a) = » where

(a,b) is the unique ordered pair in the relation that has « as its first element.

Example. Let R = {(a,1),(b,2),(c,4)} be arelation from the set 4 = {a,b,¢} to the set
B ={1,2,3,4}

Does the relation r define a function from 4 to B?
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Solution .We see that each elementin 4 is a first element of one and only one
(unique) ordered pair of elements of z.Thus £ define a function f from 4
to B andis defined as follows

fl@)y=1,fb)=2 , flc)=4.

Example Let A={1,a.2,b} and B={3.,a,2,b,4}. Which of the following relations

from 4 to B define a function from 4 to B?
i){(1,a),(a,2),(2,a),(b,0)} ii){(a,a),(1,4),(b,2),(2.2),(1,b)}.

Solution . i) The relation i){(1,a),(a,2),2,0),(b,b)} defines a function ffrom 4 to B

since each element in the set 4 is a first element of exactly one ordered pair .the
function f is defined as follows

fO=a, fl@=2,f@=a and f@)=1b

i) {(a,a),(1,4),(b,2),(2.2),(1,b)} does not define a function from 4 to B since the

element 1 in 4 is a first element of two ordered pairs namely (1,4) and (1,5).

Definition. If f: 4 — B is function we call theset 4 the Domainof f and
B the Codomainof f. If fa)=b wesay b istheimageof . and .« isthe pre-

image of .
The range of f or the image of f is the set of all images of elements of 4.That s,
Range of f = {f(a):a e A}.

Example .Let f:{1,2,3} — {a,b,c.d} bedefined by f1)=1b,72) =c,f(3) =a. What is

the domain and range of f?

Solution .Domainof f = {1,23} Rangeof f = The setof allimages of

elements of the set {1,23} = {f(1),/2), f/3)}= {a,b,c}.

Note in this example b is theimage of 1 , cisthe image of 2 and ais the image
of 3.
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The codomainof f is { a,b,c, d}.
Example Let f:z — z be given by f(z) = 2.
i)Find the images of the elements -2 ,—1,0,1,2.

ii)Find the range of f.

Solution. i) Theimagesof -2 ,-1 ,0 ,1 ,2 aregiven by
[ =2 =4 f(-D=(1 =1 fO)=0=0f0)=017=1 ,f2)=2"=4

li) Rangeof f={fx):zecz}={?:2=0,+1,42,-}=1{0,1,4,9,---,}

A Function is called a real —valued if its codomain is the set of real numbers and is
an integer —valued if its codomain is the set of integers. Two real —valued or
integer-valued functions can be added or multiplied.

Definition. Let f ,f,: 4 — R be functions and k areal number.Then f +f ,

£ —1%, Kk, and ff arealso functions from 4 to R defined forall ze 4 by
(k) (z) = Kf(x) (f + £)(2) = fi(2) + f(z)

(h = £)(@) = fi(2) = £(z) (Ah) (=) = fl2)f(x)

Example Lety ., : R — R be functions defined by f(z) =2, f(2) =2 —2>.

a) Find (f + H)(@) = f[(@) + @) =" + 22> =2, (f5)@) = f@)-h2) = *(z —2*) = 2* —a*
b) Find the functions f +f and ff.

Solution a)

) +h)ED) = D+ (D) = (D2 + (=) — (1) =1-1—1=-1 i) (f — £)(0) = £0) — £0) =0 i) (f£)2) = £[2£2) =2.2—-2%) = -8

w) (3£)(=2) = 3£(-2) = 3(-2)* = 3.4 = 12.

b) (/i + £)@) = (@) + f2) =a® vz -2 =z (ff,)2) = fi(2) @) =2 —2) =2° —a".
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Definition. Let y: A — B and s c A. The image of the of § under the function
/ denoted by

f(9) ,isasubset of B consisting of all images of elements of 5. Thatis ,
f(8) ={f(z) : = € S}.

Examplelet A={a,b,c,d,ey and B={1,2,3,4}.Let f:A— B be defined by

f@)=2,f0)=1,fc)=4,fd) =1 and fe) =1.Find the image of theset 5= 1{b,c,d}
, thatis find f(s) = f({v,c.d}).

Solution.  f(8) = f({b,c.d}) = {f(x) : & € S} = {f(b) . f(c) . f(d)} = {1,4,1} ={1,4} .

One- to -One and Onto functions

Definition . A function f: 4 — B is called one —to-one or injective if f(a) = f(b)

implies a =t forall a«,pin4

The above definition is equivalent to :. f is one-to-one ifa = b implies f(a) = f(b) .

(That is distinct elements have distinct images)
Remark. Supposef: 4 — B .

i)Toshow [ isone-to-one Assume f(a) = f(b) (Where « and b arbitrary

elements in the domainof f) andshow a=05.0rIf « =b show that f) = ().

ii)To show f is Not one-to-one find two elements z,y € 4 ,z =y such that

Example. Let f:{a,b,c,d} — {1,2,3,5} begivenby fa)=4,fb6)=5,f(c)=1,f(d) =3.

Is f one-to-one?

Solution. 7 is one-to-one since it takes different values at the four elements
.That is ,distinct elements in the domain have different images.
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Example. Let f:z — 2z begivenby f(z)=2>. Is f one-to-one?
Solution . s is not one —to-one since f(-1) = f1) but —1=1.

Example. Determine whether the function f: R — R defined by f(z) =z +1 is one-

to-one.

Solution. If 2=y then z+1=y+1 .Thus f is one-to-one.
Or Assume f(z) = f(y) and show z =y.

f@)=fly) »z+1=y+1—2z=y. Thus f is one-to-one.

Definition. Let f: 4 — B. We say f is onto or surjective if for every element
be B thereisanelement o« ¢ 4 with f)=0».

Thatis, f is onto if every elementin B is animage of some elementin 4
Equivalently, f4) = B.or range of f = B.

Remark .Supposef: 4 — B .

i) To show is onto take any element < B andfind some element o« € 4 such
that f(a) =».

ii) To Show f is not onto find y € B suchthat f(z)=4 forall z¢c4

Example .Let f:{a.,b,c,d} — {1,2,3} givenby f)=3 ,f(b)=2,f(c)=1,fd) =3.
Is f one-to-one? Onto?

Solution. f is not one-to - one since f(u) =3 = f(d) but a=d.

f isonto since all elements in the codomain are images of elements in the
domain ( every elementin {1,2,3} is an image of some elementin {a.,b,c,d}).That

is ,
f({a.b,c.d})={1,2,3 orRangeof fis {1,2,3}.
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Example . Let f:z — z defined by fz)=2*>.Is f onto?

Solution. f isnotontosince —1cz and fz) = —1 forall z ez as f(z) = 2*> >0 for

all z ez
Example Let f:z — 2z givenby fx) =z+2.ls f onto?
Solution. Lety € z. We need to find z € z such that fz)=4. We have

f@)=y=>z+2=y=>z=y—-2cZ.With z=y—-2 we get

f@)=fly—-2)=y—-2+2=y
(y is the image of y —2).Since y is arbitrary , f is onto.
Example. g: R — R be given by ¢(z) = 2 +1. Show that 4 is one to one and onto.

Definition . Let f: 4 — B.Wesay f isonetoone correspondence or bijective if
it is both one —to —one and onto.

Example Let f:{a.,b,c,d} — {1,2,3,4} be given by fla)=4,f0)=2,f(c)=3 f(d)=1.1s f

bijective?
Solution. It easy to check that s is one —to-one and onto. Hence it is bijective.
Example. Show s : R — R given f(z) = 22 —11is bijective.

Solution. a) To showy is one to one. Suppose f(z,) = f(z,) , z,,z, € R. To show

1’1 :I2.
fla) = flz,) = 2z, —1 =2z, —1 = 2z, =2z, = =, =x,. ThUS f iS one to one.

b) To show 7 isonto. Let y e R. (codomain) .To find z € R (domain) such that
flz)=y.

1
NOWf(x)zy:>2x—1:y:>2x:y+1:x:%ER.
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y+1):2(y+1

Thus f(z) = f( 5 5

)—l=y+1-1=y.

Hence f isonto.

Form (a) and (b) 7 is bijective.

Example Let 4 be a set .The identity function on denoted by ., is the function

i,: A— A and defined by «,(z) == forall z¢ 4. ., is bijective.

Example. Let4 = {a.b ¢} and B ={1,2,3}. The following relations from 4 to B

define a function s from4 to B. Determine whether they are one-to-one , onto
and bijective.

){(a,2),(,1),(c3)} u){(a,3),0,1),(c,3)}

Solution i)Here f@) =2,f0)=1 and f«) =3.Thus ftakes different values at the

three elements. Hence [ is one-to one. Since the Range off istheset B , f is
onto. Thus f is bijective and ! is given by

Fl@=a.f'M)=0./"3)=c.

ii) Heref(a)=3.,f0)=1 and f(¢)=3. fisnotoneto-one since f()=fc) but

a *= C.

It is not onto since 2 B but fz) =2 forall ze A.( or since range of f
={1,3} = B f is not onto.)

Exercise

1. Why is f not a function from R to R ,if

) f@) =L i) @) =Nz i) f@) = +2 1

X
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2.Determine whether ¢ is afunction from 2z to R if

i) f(n) = +n i) fn) = NmZ 41 i) fn) = —

n? —4 '
3. let A={1,234} and B={ab234} .Which of the following sets are relations

from 4 to B.? from Bto 47?.
){(12), (3,0),(La)} ) {(2.2),(3,3),(a.4), (a4} i) {(24),((aa),(b3)}.w){(23),(3,4), (a1) }.

dlet A=1{234a and B={abd 2 3. Which of the following relations define a
function from 4 to B. ) {(22),3,3), (a,a), (4,3)} i) {(2,), (30), (4,b), (a,b)},

Z”) {(a'b)a (3a d)v (47 3)7 (27 2) 7(37 3)} i’U) {(23 3)a (3v 4)a (aa b)} .

5.Determine whether each of these function from {a,b,c,d} to itself is one-to-one ?

on to?

i) f(a) = b, f(b) = a, f(c) = ¢ f(d) = d id) fla) = b, f(b) = b, f(c) = d. f(d) = c
iid) f(a) = d, f(b) = b, f(c) = ¢ f(d) = d.

Inverse Function and composition of functions
Definition. Let f: X — Y be a one to one correspondence (bijective).

The inverse of the function f is the function that assigns to an element y € Yy the
unique element z € X such that f)=y.The inverse function of s is denoted by

S
Thus we have f!(y) =z whenever f(z)=y and f':v — X.

From the definition, we have f'(f(z)) =z forall ze x and f(f'(y)) =y forall

yevY.
If 7 is bijective we say itis invertible.

Remark. If f is not one to one correspondence then we cannot define inverse
function.
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Example. Letf: {a.b,c} — {1,2,3} begivenby fu)=2,f0)=3,f(c)=1.ls f invertible?
If so find

.

Solution. It is easy to see that f is bijective. Thus f is invertible .
f{1,2,3 = {a,b,c} is givenby f')=c,f 12 =a,f(3)=0b.

Example Letf: R — R begiven by fz)=2:-3.1Is f invertible? If so find a

formula for s !.

Solution. We must show f is bijective , that itis one-to one and onto.
I) To show f is one -to-one. Suppose f(z) = f(y) .We have to show z=y.
f@)=fly) =22 —-3=2y—3 =2z =2y =2z =y. Thus f isone —to-one.

ii) toshow f isonto. Lety e R. We must findz ¢ R such that ) =y.

y+3

f@)=y=22-3=y=>2r=y+3=>z= eR
If we take = — 22 then f(ar):f(y;—?)):Q(ygg)—3:y+3~3:y.ThUSfiSOhtO.

From (i) and (ii) s is bijective. Hence ¢ is invertible.

To find f'.Let f@z) =y sothat f'(y) =2z.We have
f(x):y.:>2$—3=y:>2w:y+3:>x=yT+3.ThUS

iy = yTJFg.(Hence F i) = ”“”TH’ replacing y by z)

Definition Let. f: 4 — B and g¢: B — C. The composition of 3 and s denoted by
gof is defined by

(gof)(z) = g(f(x)) forall z € A.

47



Note. gof is a function from 4 to C.
Range of f must be a subset of the Domain of 4.

Example Let f:{a.,b,c} — {a,b,c} begivenby fa) =10, f(b) =c, f(c) =a and

g:{a,b,c} —{1,2,3) where g)=3,g0b)=2,qc) =1.Find gof.

Solution . gof is defined by
(gof)(a) = g(f(a)) = g(b) =2, (gof)(b) = g(f(b)) = g(c) =1, (gof)(c) = g(f(c)) = g(a) = 3.

Note fog is not defined since the range ofy is not a subset of the domain of f.
Example .Let 4, 7:7z — z be defined by f(z) =2z +3, ¢9(z) = 3z + 2.

i) Find  (g0f)(2), (fog)(—1) -

ii) Find the functions fog and gof.

Solution .i) (gof)2) = g(f(2)) = g(7) =21 +3 =24, (fog)(=1) = f(9(~1)) = f(-1) = 1.

i) (gof)(z) = g(f(z)) = g2 +3) =32z +3) +2 =62 +9 +2 = 6z +11

Remark . From the above example we see that fog = gof ,thatis composition of
functions is not commutative.

Note. 1.Suppose f: 4 — B isinvertible, thatis, /' : B — 4 exists. We have
fl@)=b< ') =a.Th.us fof ' : B— B and flof : A — A. Moreover

(fof H®) = f(f'(b) = f(a) =b forevery b € B, Hence fof ' =.,.

(f tof)(a) = f 1 (f(a)) = f'(b) = a fOr every ac A,Hence flof =,.

2, Suppose f:A—B,g: B—C,h:C — D.Since gof : A— C ,we have

ho(gof) : A— D, and (ho(gof))(a) = h((gof)(a)) = h(g(f(a)) -
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Relation on a set.

Recall that :

Definition. A relation onaset 4 isarelationfrom 4 to 4.Thatis, arelation on

aset 4 isasubset Ax 4.

Example . Let 4 ={1,2,3,4}. Write the elements of the relation & = {(a,b) : a divide b}

on the set 4.

Solution. (a,b) e R ifand only if a,b € A and « divides . Thus
R={(11),22) ,(3,3),(4,4),1,2),(1,3) ,1,4) (2,4} .

Example . Consider the following relation on the set of integers.
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i) R, = {(a,b) : a < b} )R, ={(a,b):a >0b} )Ry = {(a,b):a=>bVa=-b}
i) R, = {(a,b) : a =0} )R, ={(a,0):a =b+1} vi)Ry ={(a,b):a +b <3}

Which of these relations contain each of the ordered pairs

1,1),(1,2),(2,1),1,-1),(2,2) 7.

Solution. (1,1) belongs to R ,R,,Rr,, and R,.

(1,2) belongsto R , R, ; (21) belongsto R, R and g,.
(1,—1) belongsto g, R, ,rR, ; (2,2) belongsto R .R, R,

How many relations are there on set of n elements?

Solution. Note that a set with = elements has 2” elements. A relation ona
setis 4 isasubsetof 4xA.If 4 hasnelements then 4x4 has »? elements.
Thus the number of subsets of 4x A (That is the number of relations on the set
A) is 27",

Properties of relations.

Definition . A relation & on set 4 iscalled reflexive if (a,a)e R ( aRa) forall

ac A

Example Consider the following relation on the set 4 ={1,2,34}.

B = {11),12),22),34),(41),44)}
By ={(1,1),(12),21)}
R3 {(17 ]‘) ’(]" 2) ’(]" 4) ’(27 2) ’(3’ 3) ’(47 ]‘) ’(47 4)}

Which of these relations are reflexive

Solution. R, is not reflexive since 3c€4 but (3,3)¢ R,.
R, is not reflexive since (3,3) ¢ R, .

R, is reflexive since (a,0) € B, forall ac A.
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Example .On the set of integers define a relation R = {(a,b) : a divides b} .

a) Write true orfalse: i) (23)e R ,ii) (4.2)e R ,iii) (8,16)

b).Is r reflexive?

Solution. a) i) false i) false iii) true

b) No ,since oz O0dividesOisfalse (0,0) ¢ R.

Example .On z we define a relation R = {(a,b) : « is @ multiple of b}.

a) Write true or false . i)(6,2), i) (5,3) , iii) (—8,4)}

b)Is r reflexive?

Solution . a) i) Truesince 6 = 3.2 i) false iii) Truesince -8 = (-2).4

b) Sinceforany a«cZz wehave a=1a ,thatisaisa multiple of itself,
(a,a) € R. Hence

R is reflexive.

Definition. I) Arelation R onaset 4 iscalled symmetric if (,a) € R whenever
(a,b) € R.

i) Arelation R onaset 4 iscalled antisymmetricif (a,6) c R and (b,a) € R
then a =b.

Example. Let A = {a,b.c} . Which of the following relations on 4 are symmetric?

Solution. R, is not symmetric since (a,b) € R, but (ba) ¢ R,.

R, and R, aresymmetric.
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Example On the set z* define a relation R = {(a,b): a/b}. (a/b means a divides b

,thatis, b = k.a for some integer k.)

Is R symmetric ?antisymmetric ? reflexive?

Solution. r is not symmetric since (1,2) € kR but (2,1) ¢ R since 2 does not divide 1.
To check for anti-symmetric :Suppose (a,b) € B and (b,a) € R. To show a =b.

Since(a,b) e R and (b,a) e R we have b=k and a=mb forsome k,mcz*.Thus

we get
b=kmb=kn=1=m=k=1.Hence a=5.

Sincefor any aeZ"a/a istrue we have (s,0) € R.Thus R is reflexive.

Definition. A relation r on aset 4 is called transitive if whenever (a,b)) e B and
(b,c) € R then (a,c) € R.

Example Which of the following relations on the set 4 = {1,2,3,4} are transitive?
R 1= {{(Ll) 7(172) 7(272) 7(374) 7(47]-) 7(474)}

R, ={(11),12),21}

Ry ={(1,1),(12),(14),(22).(3,3),(41) ,(44)}

Solution R, is not transitive since (3,4) ¢ R, and (4,1) € R, but (3,1) ¢ R,.

R, is transitive. R, is not transitive since (4,1) € R, A(1,2€ R but (4,2) ¢ R.
Example .Let R = {(a,b): a / b,a,€ Z} , Show that R is transitive.

Solution. Suppose (a,b) e R and (a,b) e R .To show (a,c) € R. Since

(a,b) e RA(bc) e R=b=kaAc=mb fOor some k,me z.Thus we get

¢ = mb = m(ka) = (mk)a = na , Where n =mk e z.Therefore a /. Hence (a,¢) € R.
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Equivalence relation.

Definition .A relation on aset 4 iscalled an equivalence relation if it is reflexive
, symmetric and transitive.

Definition. Two elements « and » that are related by an equivalence relation
are called equivalent and we write o ~1b.

Example. Let4 = {1,2,3} . which of the following relationson 4 are equivalence

relation?

R ={(11),12), 22),(31),(33),(32)}
RQ - {(272) 7(273) (1 1) 7(3’ 3) 7(372)}

Ry ={(1,1),(22),(3,3)}

Solution. R, is not an equivalence relation since it is not symmetric we see
(1,2) € R, but21) ¢ .. R, and R, are reflexive , symmetric and transitive and

hence an equivalence relation

Example. Let R={(a,b):a=0bVa=—b,abez.Showthat R is an equivalence

relationon z.

Solution. We have to show r is i) reflexive ii) symmetric and iii) transitive.
Note that (a,p) e R ifandonlyif abcz and a=b or a=-b ,that is , a = +b.
To show R is reflexive

(i) For every acz  (aa)e R since a=a jstrue- Hence R is reflexive.

i) Toshow R is symmetric :suppose (a,b) € R. Then a =15 or a =—b. This implies

b=a Orb=—a.Thus by definition of R (h,a) € R. Hence R is symmetric.

iii) To show R is transitive : suppose (a,b) € B and(b,c) € R. To show (a,c) € R.
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Since (a,b) e R , and (b,c) e R We have a = +b A b= +c .Which impliesa = +(+c) = +c.
Thus (a,c) € R. Hence R is transitive,

From (i) , (ii) and (iii) we conclude that r is an equivalence relation.

Example. Let R={(a,b):a/b,abec z"}.|s R an equivalence relation on z*.

Solution. No. since it is not symmetric . (24) e B but (4,2) ¢ R since 4/2 is false.

Example Let & be relation on the set of real numbers and R={(a,b):a—bec7z}.
Show that r is an equivalence relation.

Solution. We have to show r is i) reflexive ii) symmetric and iii) transitive.
i) Reflexive : since for all real number « , a—a=0€cz istrue R is reflexive.
ii ) Symmetric): Suppose (a,b) e R . We have
a—beZ=—(a—beZ=b—acZ.Thus (ba) € R. Therefore R is symmetric.

iii) Transitive : (a,b) € RA (b,c) € R. TO sShow (a,c) € R. We have

(@) e RA(be)eR=>a—-beZNb—ceZ=(a—b)+(b—c)€Z=a—cecZ.ThUs (ac) € R.
. R s transitive.

From (i) ,(ii) and (iii) & is an equivalence relation.

Example . Congruence Modulo m.Let mez ,m >1.

We write a = b(modm) if and only if m|a—b thatis m divides a—».

Example . Let R = {(a,) : @ = b(mod 5)}.

Write true or false.

i) (10,5) € R @) (12,2) € R iii) (15,6) € R.

Solution. i) True . since 5/(10-5) i) True, sinces|12-2) iii) False ,since

515 — 6) is false.
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Example. Let R = {(a,b): a = b(modm)} . Show that R is an equivalence relation for

any m>1 , me€Z.

Solution. i) Reflexive :Since a—a=0m forany «cz we have a = a(modm) Thus,
(a,a) € R SO itisreflexive.

ii) Symmetric : If Suppose (a,b) € R. To show (b,a) € R.
(a,b) e R=a—b=kn fOorsome rez

=b—a=(—km where ¢=—-kez.
= b = a(mod m)

Thus (b,a) € R. Hence R is symmetric.

iii) Transitivity: Suppose (a,b) € RA(b,c) € R (aRb AbRc)) . TO Show  (a,c) e R (bRe)
aRb AbRc) = a —b=kmAb—c=cm fOorsome k,mez.

= (@—b)+(0—c)=km+ecm

=@=b+0—c) =Fk+cm

—=b—c=dn where d=k+ceZ.

= b = ¢(modm)

Hence brc. - R istransitive .From (i) ,(ii) and (iii) R is an equivalence

relation.

Example Show that the relation R = {(a,): a‘b ,a,b € Z*} is not an equivalence

relation.

Solution .Itis not symmetric .since 2 |4istrue but4 |2 is false.

Equivalence Classes.
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Definition. Let R be arelationonaset 4.The setof all elementsin 4 thatare
related to an element o of 4 is called an equivalence class of » with respect to
R. Itis denoted by [a].

Thus
la| ={b:aRb} = {b: (a,b) € R}.

If bela] then b is called arepresentative of the equivalence class determined

by a.
Note. [a] = @ since a € ]a].

Example .The relation? = {(1,1),(2.2).(3,3) (3,1),(1,3)} ontheset {123} isan

equivalence relation. Find.q)[1] )[3] ii)[2]

Solution
i) [1]={p: (1,b) € R} = {1,3} i) [3] ={b:(3,b) € R={1,3} ii)[2] ={b:(2D) € R} = {2}

Example .Let R = {(a,b): a =bVva = —b} be arelation on the set of real numbers.

We have seen R is an equivalence relation. Find 4)[-1] i)

%] iii) [a] ,a € R

Solution

; (- —hl=bv-l= b} = {11} i) = 2opvZo =2 difa]={-aa
)[-1]={peR:(-Lh) eR}={b: -1=bV-1=-b} ={-11} )\3] {beR.3 bv3 b} {373} jii) [a] = {~a,a}

Theorem .Let R be an equivalence relation on aset 4.The following statements
for elements «,b of 4are equivalent.

iyaRb  di)|a|=[b]  dii)[a]N[b] =2

Proof. to prove (i) = (ii). We assume (i) is true. Ifz € [a] then zRa. Thus we

have zRa A aRb.Since R is transitive zrb . Hence z € [b].

~.la]c[b]. Inthe same way one canshow|[b|C[a]. Thus [a] =][b].
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To show (ii) = (iii) . Assume[a| =[b] .Since a €[a] we have a<[a]n[s]. Thus

[a] N [b} = .
To Show (i) = (i). Assume [a|N[b] = 2.To show aRb. Let c €[a|N[b]|. ThenaRe AbRc

By symmetric c¢rb. Thus we have aRenckRb  Thus ,since , R is transitive aRb.
Thus we have proved (i) = (i) = (i) = (i). Thus all the statements are equivalent.

Remark. 1. The Theorem shows two equivalence classes are either equal or
disjoint. That is

either [a|N[t]=o or [a] =1b]

2. Since a c[a] foreach ae 4. Itfollowsthat A= [ [a].

acA

3. The equivalence classes split the set 4 in to disjoint subsets.
Partition of a set.

Definition. A partition of a set Sis a collection of nonempty disjoint subsets of S
that have S as their union..

Example . Let § = {1,2,3,4,5}. Let 4 ={1,2} 4, ={34} A4, ={5} .The set {4 ,4,,4,}
Is a disjoint collections of subsets of § Their union 4 u4,u4, =5.

Thus {4 ,4,,4,} is partition of the setS.

Remark. 1. The distinct equivalence classes of an equivalence relation form a
partition of A.

2.If s isaa partition of aset 4 then thereis an equivalence relation r
on 4 that the sets in § as its equivalence class The relation z on 4 is defined
as follows : «rb if and only if cand » belong to the same set in 5.

Example. Let 4={1,234} and R={(1,1),12),2,2),(3,3),4,4)}.Find the

equivalence classes..
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Solution

[1] = {z : 1Rz} = {1,2} = [2]
B8] ={3} [4]={4}

S ={[1],[3].[4]} is a partition of the set4. A =[]u[3]U[4].

Example. The relation R = {(a,b): « = mod(3)} 0N Zis an equivalence relation. Find

the equivalence classes of Rr.

Solution. Fora € Z ,
[a}:{b:a:bmod(S)}:{b:3|b—a}={b:b—a:3m for some mez}
={b:b=a+3m,mecZ}

Thus teclajeb=a+3m meZ.

For « =0 weget

0] ={b:b=3m,meZ}={—6-3036-"}

For a =1 weget

M={:b=1+3m,mez}={.,-5,-2,1,47,-}

2 ={b:b=2+3m}={-,—4,-1,257,--}.

It is not hard to see that these are the only distinct equivalence classes of &.
The set {[0],[1],[2]} is a partition of z.

Z=[0JUl]U[2

Example . Let 4 ={1,23} 4, = {45} 4, ={6} . {4 .4, ,4,} be a partition of {1,2,3,4,5,6}

List the ordered pair in the equivalence relation r produced by the partition.

Solution. The subsets in the partition are the equivalence classes of Rr.
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Thus R ={(1,1),(2.2),(3,3),(1,2),(1,3),(21),(2,3),(3,1),(3,2),(4,4),(5,5),(4,5),(5,4).(6,6)}

Exercise
1. List the order pairs in the relation r from A={0 ,1,2,3,4} to B={0 ,1,2,3}
where

H)R={(ab)/a=0b #@ R={(ab)/a+b=4} iit) R={(a,b)/a>b} )R =1{(ab)/ adivides b}

2. List all the order pairs inthe relation r = {(a,b) / a dividesb} 0N the set

{1,2,3,4,5,6}.

3.For each of these relation on the set 4 ={0 ,1,2,3,4} decide whetheritis

reflexive , symmetric, anti - symmetric and transitive.
i) {2,2),2,3),2,4,3,2),3,3),3,4}  @){L1),1,2),2,1),2,),3,3),4,4} @){(24),4,2}
w){(1,2),(2,3),3,4} v){(1,1),(2,2).,(3,3),(4,4)} v){(1,3),1,4),(2,3),(2,4),3,1),(3,4)} .

4.Determine whether the following relation s on the set of real numbers are
reflexive , symmetric, anti -symmetric and transitive .

)R ={(z.y)/z+y =0} )R, ={(z,y) /= = Hy} iii) R{(z,y) =0/ 2 =2y} )R ={(z,9)/2y =0} v) Ry ={(z,9)/z =1}
5 .Determine whether the following relation s on the set of integers are reflexive
, symmetric, anti-symmetric and transitive .

DR ={(z,y)/z=y} W)Ry ={(z,y)/z=y+1orz=y—1} i) Ry, = {(z,y) / x = y(mod7)} )R, = {(z,y) / = is a multiple of y} v) R = {(z,y) )z = yz}

6. Show that therelation R = {(z,y) / 2 — yis an integer} is an equivalence relation

1

on the set of real numbers. And find i) [1] ) 3

7, Show that the relation R={(m,n)/m=n or m=-n} isanequivalence

relation on the set of integers and find [0],[1].[n] neZ

8,.let A={f/f:z— z}.Show that the following relations on A is an

equivalence relation.
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a){(f,9) / J) = g} b) {(f,9)/ f(0) = g(0) or f(1) = g(1)}

9)Let 4 ={(a,b)/a,b e z"} .Show that the following relations on 4 are

equivalence relations.
i) B ={((a,b),(c,d)) / ad = bc} i) R ,={((a,b),(c,d))/a+d=0b+c}

10. Consider a =b(mod4) .Find [ 0], [1], [2].
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Chapter Five. Binary Operations.

Definition. Let 4 be aset. A binary operation on 4 isa function fromax4 to
A.Thatis, « is a binary operation on 4 if

x + AxA— A.
We write a«b for «((a,b)).

Example. 1. +:zx2z —z given by +((a,b)) = a +b is a binary operation on z .That

is the operation addition on z is a binary operation.

2. x:Zx7Z — 7 defined by «((a,b)) = a —b is a binary operation on z. Thatis, the

operation subtraction is a binary operation on 7.
Here «((a,b) =a+b=a—b.50 3x5=3—-5=—2.

3. Subtraction is not a binary operation on N. For example 3%«5=3-5=-2¢N.

In this case we say N is not closed under (the operation) subtraction.

4.let A and p(4) be the power set of 4 .The operation union “u” and

intersection'n" are binary operations on the power set ¢(4) of 4.

5.Let P bethe set of all propositions ..The logical connectives “and” () and
“or”( v) are binary operations on . That is

A:PxP — P givenby A(pq)=pAgq ; V:PxP—P givenby V((pq)=pVyg
are binary operationsonP.

6.Let 4={10} .Define ®

®((0,0)=0®0=0 ,®((01)=0®1=1
®(1,0)=120=1 (1)) =11=1

is a binary operation on 4 , thatis itis a function from A xA to A.
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We illustrate « by a table below :

® 0 1
0 0 1
1 1 1
Example. Let 5 =1{1,23}. Define A and v asfollows.
A |1 [2 |3

1 |1 |1 (2

2 |2 |3 |3

3 |13 |2 |1

v |1 2 3

1 |1 |1 |2

2 |13 |3 |1

3 |3 |1 |2

Find 4)1A1,4) 1ADA3 i) 1AV iv) (3V2)A3

Solution. Note A and Vv are binary operations on 5.

i) 1A1=1 i) (ADA3=1A3=2 i) (ADVI=1vi=1 iv) (3V2)A3=1A3=2.
Example Let © be a binary operation on z definedby a ©b=2v+a.

Find 9203 #4403 @304 w)(1o(=3) v Qol)o-3.

Solution. )2®3=234+2=8 i)4©3=234+4=10
iW)304=24+3=11 w2016 ((-3)=26(-5)=-10+2=-8
v) 201)e(3)=40(-3)=-6+4=-2

Definition. (Identity element) Let + be a binary operation onaset 4. An
element ¢ c 4 is anidentity element for « if exa=a=axe forall acA.
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Example. 1. Ois an identity element for addition onz.
2. 1isan identity element for multiplication z.

3.There is no identity element for subtraction on z. To see this
,assume thereis ¢ € z such that

a—e=a=c—a forall a e A. Thenwitha=1 we get
l-e=1=e—1 .Thatis

l1-e=1 and also1=e—-1—e¢=0 and e=2, which s false.
Hence There is no identity element for subtraction on z.
3. Consider the power set p(4) of aset 4. Since

Buws=B=wUB for all Be P(4), o isanidentity element for the binary

operation uU.

AnB=B=BnA for BeP4), 4 isanidentity element for the binary operation

n.
Theorem (Uniqueness of identity element)

Let » be a binary operationonaset 4.If ¢ and s areidentity element for «.
Then e = y.

Proof. Since ¢ is an identity element, f =ex f . Again since f is an identity
element wehave exf=¢ .Thus e = f.

Definition.(Inverse). Let * be a binary operation on a set 4 and has an identity
element ¢ for «. Let z € A. We say an element y of 4 is aninverse for z if

TxYy=€e=yx*xx.

In this case we say =z is invertible.
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Example 1. Addition( +) on z.Every element z in z has aninverse under
addition ,namely —z.

2. Multiplicationon N : 1 is only element that has an inverse for multiplication
and itsinverseis 1 since 1.1=1.

3.Multilpication on @ : Every element z = 0 of @ has a n inverse for multiplication

1
,hamely =.
Z

Definition. Let * be a binary operation on a set 4. We say

1. « is associative if for all elements ab,c iN A, ax(b*c)=(axb)xc.
2. « is commutative if for all elements ab iN4, axb=bxa.
Example. 1. + and .are associative binary operationson z.

2.Llet 4={123} andlet A be defined by the following table

A 1 2 3
1 3 1 2
2 1 2 3
3 2 3 1
a)ls A commutative ?

b) What is the identity element for A?
c.) Which elements of 4 areinvertible under A
Solution. a) Yes ,(Check that it is symmetric with respect to the diagonal)

1A2 = 2A1, 1A3 =3Al ,2A3 = 3A2..

b) 2isthe identity element. (the elements in the row along 2 and the elements
in the column under 2 are the same.)

c. all areinvertible.
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Theorem. Let « be an associative binary operation ona 4set with identity
element ¢. If 2 € 4 has an inverse under x , thenits inverse is unique. Thatis if y
and z areinverses of z then y=z.

Proof. by the definition of inverse z«y=e=yx= and zxz=e=z2xz

y=yre=yx(z*xz)=(yxz)xz=exz =2 (SiNCe x is associative and ¢ is the identity

element )
LY =Z.

Example. Determine whether A is associative ,commutative operation on z.
Check for identity element.

NrAy =z +y+a%y i) sAy =22 +2y i) Ay =x +y —3
Solution.

Ay =2x+2y i) zAy=x+y—3

Solution .i) zAy =2z +2y

a)to check A is associative. We calculate zA(yAz) and (zAy)Az.

tA(YyAz) = zAQ2y + 22) = 22 + 22y + 22) = 2z + 4y + 42

and (zAy)Az = 2z + 29)Az = 22z + 2y) + 2z = 4z + 4y + 2z

TAYAz) = (zAY)Az S 2r +4y+de =do+4dy+ 22 20— =22 S x =2

Thus if z = = then zA@yAz) = (zAy)Az. Hence A is not associative.
As a counter example take z=1,y=1 2=2 .we have

IAIA2) = 1A2 + 4) = 1A6 =2 + 2.6 = 14

(1AD)A2 = (2 +2)A2 = 4A2 = 2.4 2.2 = 12
Thus 1A(1A2 = (1ADA2.
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b)To Check A is commutative . zAy = 2z + 2y = 2y + 22 = yAz.Thus A is
commutative.

c. To Check existence of identity element. We know that if there is an identity
element cit is unique

Suppose zAe =z forall z e z. Then

e =1 — 2r +2 =z — 2 = —z .Thus ¢ depends on x . thatis, ¢ is not unique. Thus
A has no identity element.

II) Ay =z +y—3.

a) Associative

TA(YAz) =zAly +2z—-3)=x+y+2-3)—-3=x+y+2—-6

@AYAz = (z4+y—3)Az=z+y—3+2—3=s+y+2—6=aAyAz) forall z,y,2€Z.
Thus A is associative.

b)commutative . zAy =2 +y—-3=y+2—-3=yAz forall z,yecZ.

ThusA is commutative.

c)Existence of identity. Suppose there is ¢ € z such that zAe ==z forall zez. We
have,

tAe=z=z+e—3=x=c=3.Thus 3istheidentity element for A.

d) Letz € z.To find the inverse of . Suppose y is the inverse of » .Then we have
tAy=3=z+y—3=3=y=6-—zcZ.Thustheinverseof zis 6—z.

Thus every element inZ has an inverse with respectto A.

For example the inverse of 7 is 6-7 = 1.
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Example .Let z, = {0,1,2,--,n —1} n>1,nc N .Wedefine ¢, and o, onz, as

follows

For all abecz,

1. ao, b=r where ristheremainder obtained when « +1 is divided by n.

Thatis, a+b=#tn+r forsome kez and rc{01,2---n—-1}=2,
2.00,b=s wWwhere s istheremainder obtained when b is divided by n

That is, ab =cn +s forsome cez and 0<s<n—1 (byDivision algorithm)

@, is called addition modulo » and ©, multiplication modulo » .Both are

binary operationson z,

As an example consider z, ={0,1,2,3} , here n=4 .Addition and

multiplication modulo 4 are given by the tables:

o |0 (1 |2 |3
O (0 |1 |2 |3
1 |1 (2 |3 |0
2 |2 |3 |0 |1
3 (3 |0 |1 (2
©, |0 |1 |2 |3
O (0 |0 (O |O
1 10 |1 |2 |3
2 |0 |2 |0 |2
3 |10 (3 |2 |1

2@,3=1since 2+3=41+1. (r =1)
2@®,2=0 since 2=2=4140 (r= 0)

2@,1=3 since 2+1=4.0+3 (r=3).
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Definition.
1. A semi-group is a set with a binary operation that is associative.

2. Amonoid is a set with a binary operation that is associative and has an
identity element.

That is, a monoid is a semi-group having an identity element.

3. A group is a monoid in which every element in the set is invertible (has
inverse)

Example .

1.N ={1,2,3,---,} under addition is a semi-group but not a monoid.
2. z under multiplication is monoid but not a group.

3. @ under multiplication is a monoid but not a group.

4. 7z under addition is a group.

5.Q under addition is group.

6. z, under addition modulo nis a group .

Exercise

1. Determine which of the following are monoid, groups.
a) The set {-1 ,1} under multiplication.

b)The P(A) under union and 4= o.

c) The P(A) under intersection and A=o.

d) z,under A where aAb=a+b—1

2.Give an addition and multiplication table forz. .
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3. Let G be the set of all functions 7: R — r. Show the G together with the usual
addition functions is a group. Show that is not a group under multiplication of
function.
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