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  Department of Mathematics ,  Jazan University  ,Saudi Arabia 

Lecture note for Math221  -Foundation of Mathematics, 

Instructor  :Seid Mohammed (Dr) 

Semester I ,2016/17 academic year. 

Introduction. The materials covered on Foundation of Mathematics are set to lay 
the basic concepts  of mathematical logic  that are essential  to  acquire the skill in 
the language and mode of reasoning   needed at all levels of undergraduate study 
in mathematics. 

 

Contents of the course : 

1. Propositional Logic. 

2. Basic structure of Sets 

3. Relation and mappings 

4. Further properties of relation (Equivalence relation ,equivalence classes  and  

             partition of a set) 

5. Binary operations  (definitions ,properties of binary operations ,Semigroup 
.Monoid) 
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Chapter One.   Propositional logic. 

The word “logic “ is generally understood as a systematic study of the form of 
argument. We  shall confine our study  to propositional logic, that is, the  study of 
the logic of declarative sentences 

Definition  . A Proposition   is a sentence  (or declarative sentence) that is either 
true or false but not both. 

Example .  The following sentences are propositions : 

1.      Riyadh is the capital city of Saudi Arabia. 

2           Egypt is in Europe. 

3.              1 5 6  

4.             12 3 8  

Sentences  1  and 3 are true   whereas  2 and 4 are false. 

Example 2 . considerer the following sentences. 

1.What time is it?         2. read carefully.      3.  2 3 .     4.  2 3x        5.  3x y  

Sentences  1 ,  2.  and 3   are not propositions  because they are not declarative 
sentences. Sentences  4 and 5 are not  propositions   because they are nether true 
nor false. 

We say  the  truth value of a proposition  is true,  denoted by T, if  the proposition 
is true  and the truth value of a proposition is false , denoted by F, if  the 
proposition is false.  We use the  letters p, q , r, s  , …. to represent propositional 
variables  ,that is ,variables that represent propositions  just as we use  the letters  
x ,y ,z to represent numerical variables. 
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The area of logic that deals with propositions is called Propositional logic or 
propositional calculus. 

Logical operators   : We consider how to obtain new proposition  from a given 
one or more proposition s  using logical operators .  The main logical operators   
are :negation  ,and , or  , implication and bi-implication. A proposition  formed   
from existing  proposition or propositions  using the  logical operators   is  called a 
compound proposition.  Now we discussed the rules of  assigning  the truth value 
for compound propositions formed using the logical operators. Logical operators 
are also called logical connectives. 

 

Definition.(Negation) Let p  be a proposition .The negation of p  denoted by  p  is 
the statement  :”It is not the case that p ”. 

The proposition p  is read  “not p”. The truth value of the negation of  p   , p ,  is 

the opposite of the truth value of p . That is : 

  Rule I.  If  the truth value p  is T then  its negation p  is  F  . If p  is F  ,its negation 
p   is T . 

We  use a table called truth table  to  show all possible values that  a compound 
proposition  takes  under all possible assignments for the truth value of  its 
component   proposition (s) . 

Truth table for the Negation of a proposition  

p  p  
  T  F 
  F T 
 

Example . Write the negation of the following propositions  and find their truth 
values. 

1. 2  +4  =  8. 
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2. China is in Asia. 

3.  Riyadh is the capital city of Saudi Arabia. 

4.   3   <  4. 

Solution.     

1.  The negation  reads    :  It   is not the case that  2  +  4  = 8 .  In other words    
the negation of 2 4 8 is  “2  + 4    8”. 

Since the truth value of  2 +4 = 8 is F  ,the truth value of its negation  

 (2  + 4    8. ) is T. 

2 The negation  reads :It is not the case China is in Asia.  In other words , the 
negation is   “China is not in Asia”.  Since the truth value of “China is in Asia ” is T 
the truth  value of its negation  ,”China  is not in Asia.” is F. 

3. The negation reads :Riyadh is not the capital city of Saudi  ;  and its  truth value 
is F  . 

4.The negation reads : It is not the case 3 < 4 .In other words the negation is   the 
proposition   3 4     ;which is F. 

Definition (Conjunction)    Let p  and q  be propositions . The conjunction of p   and  
q  denoted by p q  is the proposition “ p  and q ”.   

Rule II. The   conjunction    p q  is true when both   p  and q   are true and is false 
otherwise. 

The truth table for  p q  

p  q  p q  
T T T 
F T F 
T F F 
F F F 
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Example  Write the conjunction of the proposition  p  and q     and find their truth 
value. 

1   P  : 3 is greater than 2      ;   q  : Egypt  is in Europe.   

2. p :   Riyadh is a city in Saudi   ; q   :  Jizan university is in Jizan    . 

Solution    

1. The conjunction of p and q ,   p q ,   is the proposition  “ 3 is greater than 2 and 

Egypt is in Europe”. Since p  is T  and q is  F , the truth value of the proposition  
p q   is  F. 

2..The conjunction  p q  is the proposition “Riyadh is a city in Saudi and Jizan 
university  is in Jizan”. 

Since p  is T  and  q   is T    by the rule  for  conjunction  ,the truth value of  p q   is  
T. 

 

Definition. Let p  and q  be propositions . The disjunction of p   and  q  denoted by 
p q  is the proposition “ p    or  q ”.   

Rule III.  The  disjunction  p q  is false when both p  and q   are   false and is true 
otherwise. 

The truth table for p q  is : 

p  q  p q  
T T T 
F T T 
T F T 
F F F 
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Example   Let p   : 4 is greater than  6    and   q  : Egypt is in Africa. 

Express the disjunction of p  and q   , p q  ,  as statement in English,and   

determine its truth value. 

Solution. The disjunction of p  and q   , p q  is the proposition  “4 is greater than 6 
or Egypt is in Africa”. ;     Since  p   is F and   q   is T  by the rule for disjunction p q   
is T. 

Definition. Let pand  q  be propositions . the conditional statement p q   is the 
proposition  “If  p   then  q ”  

 Rule IV. The  conditional statement  p q  is  false  when   p   is true   and q   is 

false  and is true otherwise. 

The truth table for the conditional statement   p q  

p  q  p q  
     T    T    T 
     F    T   T 
     T    F   F 
     F    F   T 
 

Remark : In the conditional statement  p q     , p  is called the hypothesis and   q  

is called the conclusion. Most  theorems in mathematics are of the  form p q . 

A conditional statement is also called an implication. 

The conditional statement    p q     is   also expressed as  

“If  p   then     q  “                                           “  p  implies   q ”        ‘  p  only if q  “ 

“ p       is sufficient for  q  “                          “    q  is necessary condition for   p  “ 
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Example.   

1 . Let p  : 3 is greater than 2 .        q    : 4 is greater than 5. 

Write the conditional statement   p q   and determine its truth value. 

Solution .The conditional statement   p q   is the proposition   “ If 3 is greater 
than 2 then 4 is greater than 5”  . Since p  is T and q   is  F    by the rule for 
implication , p q   is  F. 

2. Let p   : Washington is in Europe .q   :  Riyadh  is the capital city of Saudi Arabia. 

Write the conditional statements in words ) , ) , ) , )a p q b p q c q p d p q    and  

determine their truth values. 

Solution.   a)  If Washington is in Europe then Riyadh is the capital city of Saudi 
Arabia. 

    b) If Washington is not in Europe  i then Riyadh is the capital city of Saudi 
Arabia. 

c) If Riyadh is the capital city of Saudi Arabia then Washington is in Europe. 

d)If Washington is not in Europe then Riyadh is not the capital city of Saudi 
Arabia. 

Since p  is false and q  is true   we have   (a) is true   (b)  is True   (c)  is false   and (d) 
is false. 

We  consider the Converse , Contrapositive  and inverse of a conditional 
statement p q . 

a)  The conditional statement  q p   is called the converse   of  p q . 

b) The conditional statement   p q   is called the inverse of p q . 

c) The conditional statement  q p   is called the contrapositive of p q . 
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Example . 

Write   the  converse  , inverse and contrapositive of   the conditional statement   
“  If it is raining then it is cold”. 

Solution  .  In this conditional statement      we have   p  :  It is raining   and q  :  It is 
cold.  Thus  

The converse  is  “ If it is cold then it is raining”. 

The inverse is  “  If is not raining then it is not cold”. 

The contrapositive  is  “ if it is not cold the it is not raining” 

Example .  Suppose    p   and q   are propositions such that     q   is F and p  is T. Find 
the truth value of the converse, inverse and contrapositive of   p q . 

Solution .   Since  q   is F and p  is T     , q   is  T and p  is F  .Thus 

The converse ,q p   is T. 

The inverse ,  p q   is  T   , and  the contrapositive   , q p   is F. 

Definition . Let p  and q   be propositions.  The bi- conditional  statement of   p    
and   q   denoted by p q  is the proposition “ p  if and only if q ”. 

Rule 5. The bi-conditional statement p q  is true only when p  and q   have the 
same truth valueand is false otherwise. 

The truth table for p q   is ; 

p  q  p q  
T T T 
F T F 
T F F 
F F T 
 

Bi-conditional statements are also called bi-implications. 
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Remark . p q  is usually  expressed as  : 

“ p  is a sufficient and necessary condition for q ”. 

  “ p  iff   q ”.  

 

Example.  Let p : It is snowing           q  :  It is cold.  Express  in English   the 
statement    p q . 

Solution . p q  is the statement “  it is snowing if and only if it is cold “ 

Example . Let p  and q  be propositions such that p  is T and q  is F. Find the truth 
value of the following compound proposition. 

) ( ) ) ( ) ) ( )a q p q b p q q c p q q  

Solution .  a)  sinceq p   is T and q  is  T      ,  by the rule for conjunction  
( )q p q   is T 

b) Since   p q  is T  and q  is F   , by the rule for conjunction   ( )p q q  is F. 

Exercise 

1. Which of the following sentences are propositions? What are the truth value of 
those  that are propositions? 

a. Tunisia is in Europe.                                        . d. Answer the question. 

b. Riyadh is the capital city of Saudi Arabia.         e. Good morning Ahmed. 

c.   x  + 2   =   11.                                                             f. Long live the King. 

2.What  is the negation of each of the following proposition? 

a. Ahmed has  an  iphone.             C.  Naser  is a student in Jazan university 

b. 2 + 1  =  3                                      d. 2   is greater than   5.     

   e.. There is no rain  today in jazan 
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3.Let p  and  q be the propositions: 

p  : It is below freezing.              q  : It is snowing. 

Write the following propositions using p  and q ; and logical connectives. 

a. It is below freezing and  it is snowing.                  c.   It is snowing  or it is freezing. 

b.  It is below freezing and not   snowing.                 d.  It is not freezing and it not 
snowing. 

e. If it is freezing then it is snowing.                        f.  It is snowing if and only if it is 
freezing. 

 

4.Let  p   and   q   be propositions  

p   : I bought a book yesterday.             q :  2 3 . 

Express each of the following as English sentence. 

. . . . ..a p b p q c p q d p q e q p . 

5.  Determine the truth value of the following conditional statements, 

a. If  1  +  1  = 2    then   2  +  2   =   5        b.  If   1   +  1   =  3      then    2  +  2  =   4 

6.  State   the  converse   , contrapositive    and inverse  of each of the following 
conditional statements. 

a.   If it snows to day  then I will ski tomorrow. 

b. If    it   rains   then it is   cold.       C.  If it  snows tonight  then I will stay at home. 

7. Let p   and q   be propositions .The Exclusive or  of p   and q     denoted  by p q  is the proposition  
that is true  when  exactly one  only one of  them is true and  is false otherwise  . Construct  a truth table  
for p q .  
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Truth table for compound propositions. 

We show by examples  how to use  truth table to determine   the truth value of a 
compound  proposition . 

Example  . Construct the truth table for each of the following compound 
propositions. 

) ( ) ) ) ( ) ) ( ) ( ) ) ( ) ( ) ( )a p b p q p q c q p p q d p q r p q p r  

Solution.a) The compound proposition has only one  propositional variable p . 
Thus    the truth    table for   ( )p    consists   of first  column for p      ,second 
column for  p   and a third column for  ( )p  given by below. 

p  p  ( )p  
T F T 
F T F 
 

b) The compound proposition  involves  two  propositional variables  p     and q
.and  each has two possible values  ,T or F. Thus the  truth table must have four 
rows  ,  the first two columns for p    and q    the third column for   q  ,  the fourth 
column  for  p q   ,the fifth column for p q   and  last  column for  the truth   
value    ( ) ( )p q p q . 

p  q  q  p q  p q  ( ) ( )p q p q  
T T F T T T 
T F T T F F 
F T F F F T 
F F T T F F 
 

(c) and (d) are left for exercise. 
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Propositional equivalence. 

Definition.  A compound proposition that is always true  no matter the truth 
values of the propositional variables that occurs in it is called a tautology. 

A compound proposition  that is always false is called  a contradiction. 

We  use  truth table  to show  a given  compound proposition  is either   a 
tautology or a contradiction . 

Example.  Show that the following compound proposition s are tautologies. 

) ) ( ) ) ( ) ( )a p p b p p p c p q p q  

Solution. We use truth table  to show that the compound propositions are 
tautology 

a)   

p  p  p p  
T F T 
F T T 
 

From the third column of the table  we see that  p p  is always true  . Thus 
p p   is a tautology. 

b) is left for exercise. 

c)  

p  q  p  q  p q  ( )p q  p q  ( ) (p q p q  
T T F F T F F T 
T F F T F T T T 
F T T F F T T T 
F F T T F T T T 
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. 

From the last column we see that   ( ) (p q p q   is always true hence it is a 
tautology. 

Example. Show that each of the following compound propositions are 
contradictions. 

) )( ) ( )a p p b p q p q , 

Solution    

p  p  p p  
T F F 
F T F 
 

We see that p p  is always F. hence it is a contradiction. 

Definition. We say two compound propositions   p  and   q   are equivalent 
(Logically equivalent) if   and only if  p q   is a tautology.  In this case we write 
p q . 

Thus p q  if and only  if p  and q   have the same truth value. 

Example  .  Show  the following compound propositions are equivalent. 

)a p q    and p q ) ( )b p q b) p q ) ( )c p q   and   p q  

) ( )d p q r    and  ( ) ( )p q p r . 

Solution. We use truth table   to show that  both have the same truth value. 

p  q  p   p q  
T T F T T 
T F F F F 
F T T T T 
F F T T T 
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From columns  three  and four  of the table we see that  both p q  and p q  
have the same truth values . Hence  they are equivalent   ,that is, p q p q . 

b)  

p  q  p  q  p q  ( )p q  p q  
T T F F T F F 
T F F T F T T 
F T T F F T T 
F F T T F T T 
 

We see from columns six and seven  both have the same truth values.  Hence they 
are equivalent. 

 ( c) and (d) are left for exercise. 

List  of some  logical  equivalence      

a) p q q p p q q p     (  Commutative     Law) 

) ( )

( ) (

p q r p q r

p q r p q r
          (Associative Law)                                                                            

( ) ( ) ( )

( ) ( ) ( )

p q r p q p r

p q r p q p r
      (Distributive Law )                                                

( )

( )

p q p q

p q p q
 (De Morgan ‘s Laws) 

Exercise. Use truth table  to show the equivalence  of commutative law 
distributive law and De Morgan’s law 

Quantifiers. 

Consider the following sentences  involving variables such as : 

i)   x is greater  than three ( x  >  3)  ii) 3x y     ,     iii) y is the capital city of 
Saudi.iv)  y  is  a city  in the country  z. 
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Each of the above sentences have the property that once you specify  a particular 
value to the variable(s)it becomes a proposition. 

For example  in (i) if you replace x by 4   the sentence read s : 4 is greater than 3 
which is a proposition  with truth value T. If you replace x  by  2  the sentence 
reads : 2 is greater than 3  , which is again a proposition with truth value F. 

In (ii) if put  x =2 and y=1  , we get 2+1 =3 which is a proposition 

Now consider the sentence  “ x  is greater than  3” . This sentence has two parts  : 
The first part Is the variable x  , which  the subject    of the sentence   . and the 
second part  ,the predicate   “is greater than 3”  , which refers to the property the 
subject can have. 

If we let the predicate   (or the property)  “is greater than 3 “ by P  and x the 
variable then   we denote the sentence   “x is greater by than  3  “  by  P(x)   . We  
read p(x)  a s “x has the property p”. 

We write   p(x) : x is greater than 3.   

 p(4)  : 4  is greater than 3 , which is a proposition. 

Let P be a certain property.    p(x)   is called a propositional  function of  x .Once a 
value is assigned to the variable x  the sentence p(x) becomes a proposition and 
has a truth value.If p(x) is a propositional function the  value that  the variable x 
assumes is    called the domain  
Example . 1. Let P(x) :  x  <  3. 

What are the truth value of  p(4)  , P(0)   ;  p(-1)? 

Solution: P(4): 4 < 2    which is false. 

         P(0) : 0 < 2  which is true 

   P(-1)  :  -1  <  2   , which is true. 

2.Let P(x , y)  : x   >  y. 

Find the truth value s of  P(1.2)   ; P(3  , 2), 
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Solution : P(1,2) :   1  >  2   which is false. 

P(3,2)   :  3   >   2   which is true. 

3.  Q(x,y) :  x is the capital city of country y. 

Find the truth value of   Q( Riyadh  , Egypt)   .  Q(  Cairo   , Egypt)    . 

Solution : Q(Riyadh , Egypt ):  Riyadh is the capital city of Egypt  . which is false. 

Q( Cairo , Egypt)  : Cairo is the capital city of Egypt .  True. 

 

Universal and existential quantifiers 

x Universal quantifier. 
Definition . The universal quantification  of p(x) is the statement 
“For every  x  p(x)”   ( x in the domain of p(x)). 
We denote this statement by   “ ( )x p x ”. We call the symbol    the universal 

quantifier. 
Thus  ( )x p x   is read  as  “ for every x  p(x)” or “ for  all  x   p(x)”  . 

( )x p x   is true if  for every  x in the domain  p(x) is  always  true. 

( )x p x  is false if there  an x  for which p(x) is false.  

An x for which  p(x)  is false is called a  counter example for   ( )x p x . 

Example   Find the truth value ( )x p x   where ( )p x    is  :  

2 2. 1 . 0 . 0 . 2 1 3a x x b x c x d x . ( domain  consists of all  real numbers  

Solution .  a) Since   1x x   is  true for every real number  x   ,   ( )x p x    is true. 

b)Since  20 0 0   is false   (p(0)  is false ) ( )x p x    is false. Note       x  =  0  is a  

counter example. 

c) Since  2 0x   is  true for all real numbers   , ( )x p x ( 2( 0)x x ) is  true. 
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d) 2 1 3 2 2 1x x x .Thus  2 1 3x  for all   1x . Hence ( )x p x   is false. 

For example   take  0x    we get 2 0 1 3 ,    that is ,    1  =   3  , which is 

false..Hence  (2 1 3)x x    is false.   Here 0 is a counter example. 

 

x Existential quantifier. 
Definition. The existential quantification of ( )p x   is the statement    
“There exists    x in the domain such  that  ( )p x ”. 
 
We  denote  the  statement by    ( )x p x .   ' '   is called existential quantifier. 

Thus   ( )x p x     is read as    “ There exists   x  such that   ( )p x )   “  or  “there is at 

least  one x such that   ( )p x ”. 
( )x p x   is true  if there exist at  least one x  in the domain such that  ( )p x   is true. 

( )x p x   is false  if ( )p x    is false for every x in the domain. 

Example .Find the truth value   of ( )p x     where    ( )p x   is  : 

2. 3 . 0 .2 1 3a x b x c x          ; x  is a real number. 

Solution .    a.  Since  4 is a real number and  4  > 3 is true  , (4)p   is  true .Hence   
( )x p x   is true. 

b.  Since  2 0x   is for all   x   , 2( 0)x x     is false ,   that is ( )x p x   is false. 

c.   Solving for x we get  2 1 3 2 2 1x x x  . Thus  2 1 3x  is true if   x  = 1. 

,that is , (1)p   is true .   (2 1 3)x x   is true  , that is ( ( )x p x    is  true..     

 
Introduction to Proof. 
 
In mathematics  a theorem  is statement  that can be shown to be true. 
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A proof of a theorem is an argument that establishes the truth of  the theorem. 
 
Most theorems in mathematics are of the form p q   ,  that is ,, “If p      then   q .” 
 
There are three basic methods of proof :  

x Direct proof. 
x Indirect proof : 

Proof by  contrapositive 
Proof bycontradiction 

 
Direct proof :   A direct  proof is used to show    p q  true  whenever    p    is 
true. Thus in a direct proof  we assume  p   is true and use axioms  ,definitions  
and previously proven theorems to show  that  q  must be true. 
Note that in p q   ,  p   is the hypothesis  and  q   is the conclusion. 
Thus in  a direct proof  we assume the hypothesis is  true  and show that the 
conclusion is true. 
Before  we give  examples   we  give the following definitions. 
Definition .   i) An  integer  n   is called even if 2n m   for some  integer  m . 
                     ii)   An integer n  is called  odd if   2 1n m   for some integer m . 
 
An integer is either odd or even but not both. 
Example.  Give  a direct proof to the theorem      “  if n is an odd integer then  2

n .is 
odd.” 
 
 Solution.   We assume    the statement n   is an odd integer  is true .we want to 
show  the statement  2

n   is  odd   is true. 
Since  n  is odd  by definition   2 1n m   for some integer m . Thus 
 
2 2 2 2(2 1) 4 4 1 2(2 2 ) 1 2 1n m m m m m k     where  22 2k m m    is an 

integer. Hence by  definition of odd integer  2
n   is an odd integer. 
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 The theorem is true. 
 Definition . An integer  n  is said to be a perfect square if 2

n a   for some integer   
a . 
Example1 .The integers     1,4,9,16,   are perfect   squares  since , 

2 2 2 21 1 , 4 2 9 3 16 4  

 
Example2 . Give a direct  proof   :  If  m    and  n   are perfect squares then their 
product    mn   is also a perfect square. 
 Solution . We assume  m  and  n  are perfect squares. To show  mn  is a perfect 
square. 
By definition perfect  square   2

m a   and  2
n b . We have  

 
2 2 2 2. ( )mn a b ab c    where  c ab    is an integer. 

mn  is a perfect  square. 
 
Indirect  proof. 
Consider   a theorem of the form p q .sometimes the direct proof may not 
helpful to  prove  the theorem. Proofs of theorem that does not start with 
hypothesis and  end with the conclusion is called indirect proof. 
A useful type of indirect proof  is proof by contraposition. The proof by 
contraposition make use of the fact that ( ) ( )p q q p .   To  show a theorem 
of the form p q    is true  by proof by contraposition  involves showing   q p  
is true . Thus in the proof by contraposition     we assume  q  is true  and show 
that p .That is , we use direct proof to show q p . 
 
Example 3  Use proof by contraposition  to prove  the theorem   “If n  is an integer 
and  3 2n  is odd then   n   is odd” 
. 
 Proof.   We have to prove the statement  : If  n is even then 3 2n  is even using 
direct proof. 
   Assume      n  is even. To show 3 2n  is even. 
Since n  is even , 2n m .  Thus 
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3 2 3(2 ) 2 6 2 2(3 1) 2n m m m k   , for some integer k . By definition of even  
integer     3 2n   is even. 

  The theorem is proved. 
Example . Prove that  if   n   is an integer and 2

n   is odd then n  is odd. 
 Proof. We use  proof by contraposition. Assume   n   is even  and show 2

n  is even. 
Since  n  is even  , by definition   of even 2n m   for some integer m .  Thus 
2 2 2 2(2 ) 4 2(2 ) 2n m m m k    where   22k m   , which is an integer. 
2
n   is even. 

 
 
Proof by contradiction.    
Suppose  we want to prove  that a given  statement p  is true. The proof by 
contradiction  involves    assuming   that p  is false ,  that is , we assume  p   is true  
,we arrive at a statement which contradicts known facts or proven theorem   ,or  
arrive at a false statement. This  we conclude   p  is false and hence p  is true. 

Definition  A real  number  x is called  rational number if  ,
m

x
n

  for     some  

integers ,m n     and 0n . 

A real number which is not a rational number is called an irrational number 

A real number is either rational or irrational but not both. 

Example .Prove that 2   is an ir rational  number. 

Proof.  Suppose  2  is not an irrational number  ,that is, 2    is a rational number.  

By definition of rational number  2    = m
n

  where m and are integers and n 0 

having no common factor other than 1 . We have 

2 2
2 2

2
2 2 2
m m m

n m
n n n

 ………   (1) 

Thus 2
m  is even and therefore   m  is even.  Let  2m k  for some integer  k . 

Using (1)   we have  
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22n m
2 2 2 22 (2 ) 4 2n k k n k   . Thus  2

n  Is even.     n  is even. Hence  both  

m  and n   are even. That is   2 is a common factor  of  m  and n . This is 
contradiction since the only common factor of   m  and n  is 1 . We conclude  2  is 
not a rational number ,that is , 2  is an irrational number, 

Remark.1.Sometimes we use the method of proof by contradiction to show p q  
is true .  Since   ( ) ( )p q p q  to proof p q  is true    we show  the statement  
p q  is true .Thus  we can use proof by contradiction  to show  p q  is true. So  

we assume ( )p q  is true ,that is ,  )p q  is true  .Therefore to prove p q  is 
true   by contradiction we must  assume p  is true and q  is true and arrive at 
contradiction. 

Example . Give proof by contradiction of the theorem  “If    3 2n   is odd thenn  is 
odd”.    

Solution. Let   P : 3 2n  is odd    and  q : n   is odd. We  assume 3 2n  is  odd true  ( 
p is true) and   n  is even is true ( q ) is true. 

Since  n  is even   , 2n k   for some  integer  k . Thus  

3 2 3(2 ) 2 6 2 2(3 1) 2n k k k m     where 3 1m k    which is an integer. 

Hence  3 2n   is even , this is a contradiction to the fact that  3 2n   is odd. 

 The theorem is  proved . 

2. To prove a theorem of the form  p q   ( p    if and only if q  ). 

Since  ( ) ( )p q p q q p  , to prove p q  is true   we need to prove  i) p q   is 
true   and ii) q p  is true . 

Example. Prove the following theorem:  An integer n   is even if and only if 2
n  is 

even. 

Proof. i)  we prove :( )If  n  is even   then   2
n  is even.  We use direct proof  ,that 

is,we assume n   is even and show 2
n  is even. 

Since n  is even ,  2n m   for some integer m  (by definition of even) 



22 
 

Thus 2 2 2 2(2 ) 4 2(2 ) 2n m m m k    , where  22k m  , an integer. 

Therefore   by definition of even , 2
n  is even. 

ii) To prove :( )  If 2
n is even then n  is even. We use  proof by contrapositions that 

is, we assume n  is odd is true and  show 2
n   is odd. 

Since n  is odd  2 1n m   for some integer m   (by definition of odd). Thus  

2 2 2 2(2 1) 4 4 1 2(2 2 ) 1 2 1n m m m m m k   , where  22 2k m m  , an 

integer, 

Therefore  2
n  is  odd integer. 

It follows from  (i)  and (ii)  the theorem is proved . 

Exercise 

1.  Let  2( ) :p x x x   with domain  the integers. Find the truth value of the following 
propositions. 

. (0) . (1) . (2) . ( 1) . ( ) . ( )a p b p c p d p e x p x f x p x . 

2. Determine the truth value of the following propositions  if the domain for the 
variables consists  of all real numbers. 

3 4 2 2 2. ( 1) , ( ) . (( ) ) . (2 )a x x b x x x c x x x d x x x  

3.Let ( ); 1 2Q x x x   , x an integer. Find the truth value 

. (0) . ( 1) . (1) . ( ) . ( ) . ( )a Q b Q c Q d xQ x e xQ x f x Q x . 

4.Use direct proof to show that 

a.   if m  and n   are odd integers  their sum  m n  is even. 

b.   If  n   is odd integer then  2 1n   is even. 

c. if m  and n   are odd integers  their  product  mn   is odd. 
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5.  Show that  if m  and n   are integers  and 3 5n   is odd then  n is even  using 

a)     a  proof by contraposition       b. a proof by contradiction. 

6,  Use proof by contraposition  to  show the following statements; 

a.    If  5 2n   is odd then  n   is odd. 

b.   If   2( 1)n   is  odd  then    n   is even. 

7.Prove the theorem : An integer n  is odd if and only if 2
n  is odd. 

 

 

 
 

 

Chapter  2.Basic structure of sets. 

We regard a set as a collections of objects. The objects of a set are called 
elements. 

We denote sets by capital letters and elements by small letters .We write  x A    
if x is an element of A. Thus   “ x A”   is read   “ x is an element of A “ or “x 
belongs to A”  or “ x is a member of A”. If  x is not an element of A, we write x A . 

There are several ways to describe a set . 

1.Listing method Roster method.  If the elements of  a set can be listed , for 
example the elements  of a set A are only  a , b , c and d then we write 

 A  =   {a , b , c, d} .That is ,we list the  elements of the set  and enclosed by braces. 
This way of describing  a set  is called roster method. 

Example.  The   set  A of all natural numbers less than 7 can be written as A  =  {  1 
, 2 , 3 ,4 , 5, 6}. 
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The set   B of all positive  odd integers  less than 10  can be written as    

 B =  {1  , 3  ,5  ,7  , 9} 

The roster method is also used to describe  a set without listing all of its elements  
if the elements have some pattern. In this case we list some members of the set  
followed by three dots “ ” and then enclose by braces. 

Example. The set of all positive integers less 100 can be written  as   

A  =  {  1  ,  2  ,3 ,     , 99}. 

If the elements of a set  cannot be listed but have certain pattern  then  we  write 
a few elements followed by three dots and enclosed by braces. 

Example  The set  of all natural numbers can be written as  

  =    { 1 ,2 , 3  ,    }. 

The set Z  of all negative integers  can be written as  Z    =    {   ,  -3  ,-2  ,-1} 

The set of integers   =  {     ,   -2  , -1  , 0 ,1  , 2 ,    } 

The set of all odd positive integers  {1,3,5, }O  

Set Builder method  :  If  the elements  of set    A  satisfy certain property p , that 
is  , if the elements of set A are those  which have the property p,   then we write  

 A  =  { x : p(x)  }   we read as the set of all  x such that p(x). 

The elements of A are those for which p(x) is true. 

This way of describing a set  is called set builder method. 

Example. The set of  O  all odd integers can be written  

 O  ={  x :  x is an odd  integer }. Here the property   p is “being an odd integer”.   

4 O   since  4 is not an odd integer , that is,  p(4) is  false. 

Example .List the elements of the following set. 
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a. A =  {x :  x is a positive integer less  10} 

b. B  = { x: x  is a perfect square integer less  17 } 

c.  C  = { x :  x is an integer and 2x +3  = 5.} 

 

Solution  

a) {1 ,2,3 ,  . . . , 10}        b)  {1  ,4 ,9 ,16}   c)  { 1 } 

Equality of sets  and subsets. 

Definition .Two sets  A    and B  are equal   written   A  =  B  if and only they the 
same elements. 

Example If   A  =   {2  , 4 . 1 }   and   B   =    { 1  , 2,  4 }  then  A    are  B. are since 
they the same elements . 

Thus A  =  B.  

Note the order   in which the  elements are listed  does not matter. 

Example  The sets  {1 ,2 3, } and  { 1,1,2,2,3,3,3,} are equal since they have the 
same elements. 

 A set does not changed If its elements   are  listed more than once . 

Remark. we  shall use the following sets   

{1, 2, 3, }     The set of natural numbers 

{ , 3 , 2, 1, 0, 1, 2, 3, ,}   , the set of integers 

{ : , , 0}
m
m n n

n
 ,  the set of rational numbers 

= the set of real numbers. 

Two special set   : The Empty set and the Universal set. 
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A set which  does not any element is called   the Empty set or null set and is 
denoted by   or  {   }. 

Example .The set A =  {x : x is an integer and    x  x}  has no element .Thus   A  =  
  . 

The universal set denoted by  is the set which contains all elements under 
consideration for a certain discussion. If  is the universal set and  A is any set 
then every element in A must be in  . 

Note. Sets may contain other sets. 

Example. Let { , { }, , { }}A a b c c .Find the truth value of the following statemnets. 

) ) ) { } ) { } ) ) { }i a A ii b A iii b A iv c A v c A vi a A . 

Solution.   i)  T     ii)  F    iii) T    iv)    T       v)     T      vi)     F 

Venn diagram  :  

Sets can be represented graphically using diagrams called Venn diagrams.In Venn 
diagrams the universal set is represented by rectangles ,inside the  rectangle  
circles or other figures are used to represent sets. 

Example. Let U =the set of integers . Draw a Venn diagram that represents the set  
A = he set of all  positive integers less than 5. 

 
U 
 
 
             A 
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Subset  

Definition .The set A  is a subset of the set B written  A B  if and only if every 
element of A is also  an element of B .  

Thus  ( )A B x x A x B   is true. 

Note . To show that A  is  a subset of B    show that if  x  belongs toA  then x also 
belongs to B  

   To show that  A   is not a subset ofB   find  a single  x A  such that x B . Such 
element x is call counter example. 

Example   1. If { , , , 2, 3}A a b c    and {1, , 4, , 5, , 2, 3}B a b c   then  A B  since each 

element of  A   is also an element of  B  .   But  B  is not  a subset of A   since 1 B   
and 1 A    (1 is a counter example) 

        2.  If A   is the set of positive integers less than 100 then A . 

Theorem.  For every set   S ) )i S ii S S . 

Proof.   i)   Suppose  is not a subset S   .Then there is  a single element x  
such that x S . But this is  a contradiction  since  has no member. S . 

ii) If   x  belongs to   S   then  x belongs S   is true . Thus S S . 

Example. Let { , }S a b . List all subsets of the set  { , }S a b . 

Solution. , , { } , { }S S S a S b S  are the subsets of  S . 

 Proper subset  : If   an A B   and A B   we  say  A   is a proper  subset of B   and 
we write  A B . 

Thus A B   if  and only if ( ) ( )x x A x B x x B x A . 

Note.   For any set ,S S S   is false. 
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Example .  Let  { , , }A a b c    and  { , , , , }B a b c d e . Then  A B   since  A B   and 

A B . 

Example. Let { , }S a b . List all  proper subsets of the set  { , }S a b . 

 Solution.  , , { } , { }S a S b S  are the only proper subsets  of S . 

. 

Note. To show two sets  A   and  B  are equal we must show   A B   and  B A. 

Example  Let  { :A x x  is    even integer }       and   

{ :B x x   is the sum of two odd integers} 

Show that  A B . 

Solution. We must show  i) A B   and  ii)B A. 

i). To show A B .  

2 ,

(2 1) 1

x A x m m

x m

x B

 

A B  

ii) To show  B A. 

(2 1) (2 1), ,

2( 1)

2 , 1

x B x m n n m

x m n

x k k m n

x A

 

B A  

Thus A B . 

Example. Let  
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{1 , {1} , { } , {{1}} ,{2 ,{1}} , {{1}}}A .Determine the truth value of the following 

statements. 

){1} , ) 2 , ) ) {{1}} ) {2, {1}} ) { }i A ii A iii A iv A v A vi A. 

Solution.  i)  T    ii)  F     iii)   F    iv)   T     v)     T        vi )  F. 

 

 

Power set. 

Definition . Given a set  S  , the power set of  S    denoted by  ( )S   is the set of all 
subsets  of the set S . 

Note that always  the     and S   belong to ( )S . 

Example . { , , {1}}S a .  Find ( )S . 

Solution. We want all subsets of S . 

( ) { , ,{ }, { } ,{{1}} ,{ , } , { ,{1}} ,{ , {1}}}S S a a a  

Size of a set. 

Definition. Let  S  be a set. If there are exactly   n distinct elements  in S where n is 
a nonnegative  integer, we  say S is finite and   we call n the cardinality of S .The 
cardinality of S is denoted by S . 

Example  Let   {1 , , , , }S a b c a . The distinct elements of S are  1 ,a ,b  ,c.   Thus S  is 

finite and S  = 4 . 

0  , since   the    has no element. 

Definition. A set is said to be infinite if it is not finite. 

Example .The set of positive integers is infinite 
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Note .If  a set S   has  n  elements   then ( ) 2ns . 

 Set Operations. 

Definition.  Let A   and  B  be sets. The union of the sets A   and  B    denoted by  
A B  is the set that contains  those elements that are in A   or  in B   or  in both. 

Thus         . { : }A B x x A x B  . 

Example. Let {1 , 3 , 5}A   and  {1 , 2 , 3 , 5 , 4}B .The union of A   and  B  is the set 

{1 ,2 ,3, 4 ,5}A B . 

Example  Let { : 5 9}A x x x {1 ,2 3, , 11}U . List the elements of  A. 

Solution.   For x U , 5 9x x    is true if and only if   x  <  5 is true  or    x  >   9 is 

true   .  Thus 

{ : 5} { : 9} {1 ,2 ,3 ,4} {10 , 11} {1 ,2 ,3 ,4 ,10 ,11}A x x x x . 

Remark :The   union operation   " "   on sets is the counter part of the logical 
connective " " .             

Definition. Let A   and  B  be sets. The intersection of the sets  A   and  B  denoted 
by  A B  , is the set containing those elements in both  A   and  B .  Thus  

{ : }A B x x A x B . 

Remark: The   intersection operation " "    on sets is the counter part of the logical 
connective " " . 

Example . Let  {1 ,3,5} {1 ,2 ,3}A B  . Then the intersection of A   and  B  , 

{1 ,3,5} {1 ,2 ,3} {1 ,3}A B . 

Definition. Two sets are  disjoint   if their intersection is the empty set. 
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Example .  Let {1 ,3 ,5 ,7 ,9} , {2 ,4 ,6 ,8}A B .Because   A B , A   and  B  are 

disjoint sets. 

Note   If A   and B   are  finite sets      then A B A B A B . 

Definition .  Let A   and  B  be sets. The difference of  A   and  B   denoted  by A B  
, is the set containing those elements that are in A    but not in B . 

{ : }A B x x A x B  

     We also denote A B   by \A B . 
The difference of A and  B  is also called  the complement of  B  with respect to A . 
 
Example. The difference of  the sets    {1 ,3 ,5}    and {1 ,2 ,3 }  is  {5}  , that is  

.The difference of the sets{1,2 ,3}   and {1, 3 ,5} ,   that  is. 

{1 ,2 ,3} {1 ,3 .5} {2} . This shows that in general A B B A . 

Definition. Let  U be the universal set .The complement of the set  A   denoted by 
A    is the complement of  A   with respect to U. Therefore A U A  . 

x A   if and only if  x A . 

{ : }A U A x U x A . 

Example .Let   {1,2 , ,90}U    . Find the complement of the  set A   if  

i)  {1 ,2 ,3 , 11}A .      ii )  {2 ,4 ,6 , 90}A  

Solution .i)  {1 ,2 ,3 ,6 , 11} {12 ,13 ,14, ,90}A U . 

 ii)  {2 , 4 ,6 , ,90} {1 ,3 .5 , ,99}A U . 

Example  Prove that  A B A B . 

Solution.   

We  must show   i) )A B A B ii A B A B .  

{1 , 3 ,5} {1 , 2 , 3} {5}
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)i x A B x A x B          (by definition of difference of sets) 

x A x B    (definition of complement) 

x A B        (Definition of intersection) 

A B A B . 

. ) ( )ii x A B x A x B x A x B x A B .  ThusA B A B . 

Therefore  A B A B . 

 

Exercise 

1.  List the members of  the following  sets. 

a.  { x  :x   is  a real number such that 2 1x } 

   b.  {x/  x is a positive integer less than 12 }. 

  c. {x /  x is the square of an integer and   x  <  100  } 

d.  { x : x  is  an integer such that 2 2x } 

2.Let     A    =    {  0  , 2  ,4  ,6  ,8}     B  =   {0   ,  3  ,2   , 1 ,4 ,5 ,6}     

C   =   { 4  ,5  ,6 ,7  ,8  ,9 ,10} 

 Find 

. . . . ( )a A B b B C c A B d A B C . ( ) ( ) . ( ) ( )e A B A C f A B C B     . 

3. Let {1 ,2 ,3, ,10}   be the universal set. List the elements of the following sets. 

2 2. { : 6 3} . { : 7 3} . { / 7 12 0 5}a x x x b x x x c x x x and x  

4. Which of the following sets contain 2 as an element of these sets. 

a) {x : is an integer greater than 1 } 
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b. { x : is the square of an integer} 

c. {2 ,{2}}    d.{{2} , {{2}}}       e.  {{2} ,{2 ,  {2} }   f {{2}} 

5.Determine which of the of following statement is true or false. 

a.  0        b.   { 0 }     c.  {  }        {  }         d.  {0 }     { 0  } 

e.    {   }     f.   {  }     {  }      g.      {  ,  {  } }     h.     {    ,  {   } }. 

6 Find the power set of the following sets . 

a.         b.   {   1  }         c.   (  1  ,a   }      d   .    {   , {1}   } . 

 

Properties of union and intersection 

Theorem The set operations union and intersection  have the following 
properties: 

1.  .A B B A ii A B B A        (Commutative property) 

2. ( ) ( )

( ) ( )

A B C A B C

A B C A B C
                           (Associative Property)  

3. ( ) ( ) ( )

( ) ( ) ( )

A B C A B A C

A B C A B A C
               (Distributive property) 

4. ,A B A B A B A B      De Morgan’s law for sets. 

Proof. The proofs depend on the properties of logical equivalence and the 
definitions of union and intersection. 

1. { : } { : }A B x x A x B x x B x A B A   (since p q q p   and the 
definition of union offsets.) 

2
( ) ( ) ( ) ( ) ( )x A B C x A x B C x A x B x C x A x B x C x A B  

  (since  ( ) ( )p q r p q r   and the definition of union) 
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Therefore    ( ) )A B C A B C . 

3.  We show   i. ( ) ( ) ( )A B C A B A C        and  ii. ( ) ( ) ( )A B A C A B C  

i.  ( ) ( )x A B C x A x B C      (Definition of “U” 

( )x A x B x C       (Definition of “ ” 

( ) ( )x A x B x A x C       ( ( ) ( ) ( )p q r p q p r  

( ) ( )x A B x A C  (Definition of “U”) 

( ) ( )x A B A C         (Definition of intersection) 

 

Therefore  ( ) ( ) ( )A B C A B A C  (  Definition of subset) 

ii.  left for exercise. 

4. x A B x A B      (definition of complement) 

x A x B     (definition of “U” 

x A x B    (definition of complement) 

x A B       (Definition of intersection) 

A B A B   ( by equality of sets  since ( ( ) ( )p q p q q p  

Exercise.   

1.   Let   { : 3 , }A x x m m    and  { : 6 , }B x x m m . Show that  B A. 

2.   Show that   for sets  A   and B   . U  is the universal set. 

) ) )i A B A ii A B A B iii A A U . 

3.   Find sets   A   and B    if  {1,5,7 ,8} {2,10} {3 ,6,9}A B B A A B . 

4.  Use De-Morgan’s  law for sets to show  A B C A B C . 
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5.   Show that  ( ) ( ) ( )A B C A B A C  . 

6.   Let {1,2, ,10}U   be the universal set . List the elements of the following sets. 

a)   { : 5 6}A x x x ) { : 2 7}b B x x x  

 

Generalized Union and Intersection. 

Since union and intersection of sets satisfy associative property ,the sets  A B C   
and A B C   are well defined . Thus A B C   contains those elements that  are 
in at least one of the sets   ,A B and C    and  A B C   contains  those elements that 

are in all the sets  ,A B and C . 

Example. Let   {0,2 ,4 ,6,8} {0,2,3,4} {0, 3,6,9}A B C . What are A B C   and 

A B C ? 

Solution A B C {0 , 1,2, 3,4,6 ,8,9} . 

A B C {0} . 

Let 1 2 3, , , ,
n

A A A A   be n sets .Their union and intersection  are written as follows 

1 2 3
1

{ / , 1,2 , , }
n

n i i

i

A A A A A x x A for some i i n  

1 2 3
1

{ / , 1,2 , , }
n

n i i

i

A A A A A x x A for each i i n . 

Example  For 1,2,3,i    let  

{ , 1, 2, 3, ,}
i
A i i i i  

Find     
4 4

1 2 3
1 1

) , , ) )
i i

i i

a A A A b A c A

4

3 1 2

) ) )
n n

i i i

i i i

d A e A f A  

Solution.   a)   1 2 3{1,2,3, } {2,3,4, } {3,4,5, }A A A . 
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4

1 2 3 4 1
1

)
i

i

b A A A A A A
4

4

1 2 3 4
1

)
i

i

c A A A A A A  

d)  3 4 5 3
3

n

i n

i

A A A A A A 3 4 5
3

n

i n n

i

A A A A A A . 

f) 
4

2 3 4 2
2
i

i

A A A A A  

Suppose 1 2 3, , , , ,
n

A A A A  ,  are sets   we   define 

1 2 3
1

, , { / , 1,2,3, ,}
n i i

i

A A A A A x x A for at least one i i  

1 2 3
1

, , { / , 1,2,3, ,}
n i i

i

A A A A A x x A for each i i . 

Example .   Let  {1,2,3, , } , 1,2,3,
i
A i i  

Find    a)   1 2 8 100, , ,A A A A 1 2 8 100)b A A A A  

100 100

1
1 1 1 1

) ) ) )
i i

i i i i

c A d A e A f A  

Solution. a)    1 2 3 100{1} {1,2} {1,2,3} {1,2,3 , ,100}A A A A . 

1 2 3 100 100) {1} {1,2} {1,2,3} {1,2,3, ,100}b A A A A A  

100 100

100 ) 1
1 1

) {1}
i d i

i i

c A A A A  
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Chapter Three.      Relation  and Mappings 

Cartesian  product  

Definition .Let A  and B  be sets . The Cartesian   product of A   and B  , denoted by 
A B   , is the set of all ordered pairs ( , )a b  , where a A   and b B . Hence  

{( , ) : }A B a b a A b B . 

Note in the order pair  ( , )a b   , we call  a the first element and  b the second 

element. 

Example .Let A  be the set of all students   in the Department of   Mathematics   at 
Jazan University   and  B   the set  of all courses offered by the Department of 
mathematics at Jazan University. What is the Cartesian product A B ? 

Solution .The Cartesian product A B  consists of the ordered pairs   of the form  
( , )a b  where a is  a student in the Department of Mathematics  and b a course 

offered by the Department of Mathematics. 

Example. Let {1,2} { , , }A B a b c  . Find   the  Cartesian product s A B    and  

B A. 

Solution.   The Cartesian product {(1, ) ,(1, ) ,(1, ) ,(2, ) ,(2, ) ,(2, )}A B a b c a b c  

{( ,1) ,( ,2) ,( ,1) ,( ,2) ,( ,1) ,( ,2)}B A a a b b c c . 

We see that  A B B A . 

 The Cartesian product of more two sets can be defined similarly. 

Definition. Let 1 2, , , nA A A  be  n sets .The Cartesian product  of the sets  1 2, , , nA A A   

, denoted  by 
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1 2 n
A A A   is the set of ordered n –tuples   1 2( , , , )

n
a a a   where 

1,2, ,
i i
a A for i n .That is , 

1 2 1 2{( , , , ) : 1,2, , }
n n i i

A A A a a a a A for i n . 

We use the notation  2
A   to denote  A A  the Cartesian product of the set A   with 

itself. 

 

Example. What is the Cartesian product A B C   where 
{0,1} {1,2} {0,1,2}?A B and C  

Solution. The Cartesian product A B C   consists of all ordered triples ( , , )a b c  

where ,a A b B and c C . Hence 

, {(0,1,0),(0,1,1),(0 ,1,2}),(0,2,0) .(0,2,1) ,(0,2,2)

(1,1,0) ,(1,1,1) ,(1,1 ,2),(1,2,0) ,(1,2,1) ,(1,2,2)}

A B C  

Definition. A subset  R  of  the Cartesian product A B  is called a relation from 
A to B . 

 Thus  R  is a relation from  A to B  if and only if R A B .The  elements of the 

relation   R  are ordered pairs ,where the first  element belongs to A   and the 
second element  belongs to B . 

Example . The set {( ,2),( ,3),( ,1),( ,2)}R a b a c   is a relation from the set { , , , }a b c d   to 

the set{1,2,3,4}   since   { , , , } {1,2,3,4}R a b c d . 

Definition .A relation from  a set A   to itself is called a relation on A. That is  R    is 
a relation  on A  if and only if   R A A . 

Example  Let R  be a relation on  the set A   =  {0,1,2,3}   having the property that  

( , )a b R  if and only if a b .    That  is  {( , ) : , }R a b a b where a A b A . 

a)  Write T or F :  )(2,1) ) (0,2) )(1,4)i R ii R iii . 
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b)   What are the ordered pairs of R ? 

Solution. i)  F   ii)   T    iii)  F   

{(0,2) ,(0,2)}, {0,3) ,(1 ,1) (1.2) ,(1,3) ,(2,2) ,(2,3) ,(3,3)}R . 

Example .  Let {0, 1, 2} {0, 2 }A B .Let  {( , ) : }R a b a b   be the relation from A  to 

B ..What are the ordered pairs of R . 

Solution  The ordered pair ( , )a b R if and only if a A   , b B   and a b . Thus 

{(0,2) ,(1,2)}R  

Functions. 

Definition .Let A   and B  be nonempty sets. A function from A   to B  is a rule that 
assigns exactly one element of B   to each element ofA . We write ( )f a b  if  b  is 
the unique element of B   assigned  by the function f  to the element  a   of A . 

If f   is a function from A   to B  ,  we write  :f A B . 

Remark :  Functions are sometimes  also  called   mappings or transformations. 

A function    :f A B  can also be defined in terms of a relation  from   A   to B . 

 As follows: A relation from   A   to B    that contains one and only one ordered 
pair  ( , )a b  for every element a A  defines  a function f  from A   to B .  This 

function is defined  by setting ( )f a b  where   

( , )a b  is the unique ordered pair  in the relation that has a   as its first element. 

Example. Let {( ,1) ,( ,2) ,( ,4)}R a b c  be a relation  from the set { , , }A a b c   to the set 
{1,2,3,4}B  

Does the relation  R  define a function from A   to B ?  
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Solution .We see that each element in A  is  a first element of one and only   one 
(unique)   ordered  pair of elements of R .Thus   R   define a function f   from  A   
to B    and is  defined as follows  

( ) 1 , ( ) 2 , ( ) 4f a f b f c . 

Example   Let  {1, ,2, }A a b      and   {3, ,2, ,4}B a b . Which of the following relations 

from A  to B  define  a  function from A  to B ? 

){(1, ),( ,2),(2, ),( , )} ) {( , ),(1,4),( ,2),(2.2),(1, )}i a a a b b ii a a b b . 

Solution  . i)  The relation ){(1, ),( ,2),(2, ),( , )}i a a a b b   defines a function   f from A  to B  

since each element in  the set A  is a first element of exactly one ordered pair .the 
function f  is defined as follows  

(1) , ( ) 2 , (2)f a f a f a    and ( )f b b  

) {( , ),(1,4),( ,2),(2.2),(1, )}ii a a b b  does not define  a function  from  A  to B  since the 

element  1  in A   is a first element of two ordered pairs   namely (1, 4)   and (1, )b . 

Definition. If :f A B    is  function  we call      the set A   the Domain of f       and  
B   the Codomain of f .  If  ( )f a b   we say  b   is the image of a     and  a   is the pre-
image   of b . 

The range of f   or the image of f   is the set of all images of elements of A .That is , 

Range of f   =  { ( ) : }f a a A . 

Example .Let : {1,2 ,3} { , , , }f a b c d    be defined by (1) , (2) , (3)f b f c f a . What is 

the domain and range of  f ? 

Solution .Domain of f    =  {1,2 3}    Range of   f     =   The set of all images of 

elements  of the set   {1,2 3} { (1) , (2), (3)}f f f =  { , , }a b c . 

Note in this example   b is the image of 1   , c is the image of 2  and a is the image 
of 3. 
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The codomain of f     is   {  a ,b ,c, d}. 

Example Let  :f   be given by 2( )f x x .  

i)Find the images  of the elements    2 , 1,0,1 ,2 . 

ii)Find the range of f . 

Solution.  i) The images of   -2  ,-1   ,0    , 1   ,2  are given by
2 2 2( 2) ( 2) 4 , ( 1) ( 1) 1 (0) 0 0f f f

2 2(1) (1) 1 , (2) 2 4f f . 

Ii)   Range of   f 2{ ( ) : } { : 0, 1 ,, 2 , } {0,1,4,9, ,}f x x x x  

A Function  is called a real –valued if its codomain is the set of real numbers and is 
an integer –valued if its codomain is the set of integers.  Two real –valued or 
integer-valued functions can be added or multiplied. 

Definition. Let 1 2, :f f A   be functions   and  k   a real number.Then  1 2f f   , 

1 2 1,f f kf    and 1 2f f  are also functions from  A   to  defined  for all x A    by  

1 1( )( ) ( )kf x kf x 1 2 1 2( )( ) ( ) ( )f f x f x f x  

1 2 1 2( )( ) ( ) ( )f f x f x f x 1 2 1 2( )( ) ( ) ( )f f x f x f x  

Example  Le t 1 2, :f f   be functions defined by 2 2
1 2( ) , ( )f x x f x x x . 

a)  Find 2 2 2 2 3 4
1 2 1 2 1 2 1 2( )( ) ( ) ( ) , ( )( ) ( ). ( ) ( )f f x f x f x x x x x f f x f x f x x x x x x  

b)  Find the functions  1 2f f     and  1 2f f . 

Solution   a)   
2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2) ( )( 1) ( 1) ( 1) ( 1) ( 1) ( 1) 1 1 1 1 ) ( )(0) (0) (0) 0 ) ( )(2) (2) (2) 2 .(2 2 ) 8i f f f f ii f f f f iii f f f f
 

2
1 1) (3 )( 2) 3 ( 2) 3( 2) 3.4 12iv f f . 

b) 2 2 2 2 3 4
1 2 1 2 1 2 1 2( )( ) ( ) ( ) , ( )( ) ( ). ( ) ( )f f x f x f x x x x x f f x f x f x x x x x x . 
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 Definition. Let :f A B   and    S A . The image of  the  of S   under the function  
f   denoted by   

( )f S   , is a subset of B    consisting of all images of elements of  S . That is  , 

( ) { ( ) : }f S f x x S . 

Example Let  { , , , , }A a b c d e    and  {1 ,2 ,3 ,4}B .Let   :f A B  be  defined by  

( ) 2 , ( ) 1 , ( ) 4 , ( ) 1f a f b f c f d    and  ( ) 1f e . Find the image of the set   { , , }S b c d   

, that is find ( ) ({ , , })f S f b c d . 

Solution . ( ) ({ , , }) { ( ) : } { ( ) , ( ) , ( )} {1 ,4 ,1} {1 ,4}f S f b c d f x x S f b f c f d . 

One- to -One and Onto functions 

Definition . A function f : A B  is called  one –to-one or injective if  ( ) ( )f a f b   
implies a b  for all  ,a b  inA  

The above definition is equivalent  to   :. f  is one-to-one  if ( ) ( )a b implies f a f b   . 

(That is distinct elements  have distinct images) 

Remark. Suppose :f A B  .  

 i)To show    f  is one- to-one     Assume ( ) ( )f a f b  (where a   and b  arbitrary  
elements in the domain of f )     and show  a b . Or If a b   show that ( ) ( )f a f b . 

ii)To show f  is Not one-to-one  find two  elements ,x y A  ,x y   such that  

( ) ( )f x f y .  

Example. Let : { , , , } {1 ,2 ,3 , 5}f a b c d  be given by   ( ) 4 , ( ) 5 , ( ) 1 , ( ) 3f a f b f c f d . 

 Is f  one-to-one? 

Solution.   f   is one-to-one since it takes different values at the four elements 
.That  is  ,distinct elements  in the domain have different images. 
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Example.  Let   :f    be given by 2( )f x x .  Is f  one-to-one? 

Solution  . f   is not one –to-one since ( 1) (1)f f   but 1 1. 

Example. Determine whether the function :f  defined by ( ) 1f x x  is one-
to-one. 

Solution.   If x y   then  1 1x y   . Thus f   is one-to-one. 

Or Assume ( ) ( )f x f y   and show x y . 

( ) ( ) 1 1f x f y x y x y .  Thus f   is one-to-one. 

 Definition. Let :f A B .  We say f   is onto or  surjective if for every element    
b B    there is an element a A   with ( )f a b .  

That is, f   is  onto  if every element in B   is an image of some element in A  
Equivalently , ( )f A B .or range of f B . 

Remark .Suppose :f A B  .  

i) To show is onto take  any  element    b B  and find  some  element a A   such 
that ( )f a b . 

ii) To Show f  is not onto find  y B  such that ( )f x y  for all  x A  

Example .Let : { , , , } {1 ,2 ,3}f a b c d  given by  ( ) 3 , ( ) 2 , ( ) 1 , ( ) 3f a f b f c f d . 

Is f  one-to-one? Onto?  

Solution. f   is not one-to - one since ( ) 3 ( )f a f d   but  a d . 

f  is onto  since  all elements in the codomain are images of elements  in the 
domain ( every element in {1 ,2 ,3}  is an image of some element in  { , , , }a b c d ) .That 

is  , 

({ , , , }) {1 ,2 ,3}f a b c d    or Range of  f is {1 ,2 ,3} . 
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Example . Let :f   defined by 2( )f x x . Is f  on to? 

Solution. f  is not on to since  1   and  ( ) 1f x  for all x  as 2( ) 0f x x  for 
all x  

Example   Let  :f   given by  ( ) 2f x x . Is f  onto? 

Solution. Lety . We need to find x   such that ( )f x y . We have  

( ) 2 2f x y x y x y . With  2x y   we  get   
( ) ( 2) 2 2f x f y y y  

 (y  is the image of 2y ).Since y  is arbitrary  , f  is onto. 

Example. :g   be given by ( ) 2 1g x x . Show that g  is one to one and onto. 

Definition . Let  :f A B . We say  f   is one to one  correspondence  or bijective  if 
it is both one –to –one and onto. 

Example Let : { , , , } {1 ,2 ,3 ,4}f a b c d  be given  by ( ) 4 , ( ) 2 , ( ) 3 ( ) 1f a f b f c f d . Is f    

bijective? 

Solution. It easy  to check  that f   is  one –to-one and onto. Hence it is bijective. 

Example. Show :f   given ( ) 2 1f x x is bijective. 

Solution. a)  To show f  is one to one. Suppose 1 2( ) ( )f x f x   , 1 2,x x . To show 

1 2x x . 

1 2 1 2 1 2 1 2( ) ( ) 2 1 2 1 2 2f x f x x x x x x x . Thus f  is one to one. 

b)  To show f  is on to. Let y . (codomain) .To find  x  (domain) such that 
( )f x y . 

Now 1
( ) 2 1 2 1

2

y
f x y x y x y x . 
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Thus 1 1
( ) ( ) 2( ) 1 1 1

2 2

y y
f x f y y . 

Hence f   is on to. 

Form (a) and (b)  f   is bijective. 

 

Example  Let A  be a set .The identity function on denoted by 
A

 is the function
:

A
i A A  and  defined  by  ( )

A
x x    for all x A .  

A
  is bijective. 

Example.  Let { , }A a b c  and {1 ,2 ,3}B . The following relations from A  to B  

define a function  f  fromA  to B . Determine whether  they are one-to-one   , onto   
and bijective. 

) {( ,2) ,( ,1) ,( 3)} ) {( ,3) ,( ,1) ,( ,3)}i a b c ii a b c .   

Solution  i)Here   ( ) 2 , ( ) 1f a f b    and ( ) 3f c .Thus   f takes different values at the 

three  elements. Hence  f   is one-to one. Since the Range of f   is the set  B   , f   is 
onto. Thus  f   is bijective  and 1

f  is given by  

1 1 1(2) , (1) , (3)f a f b f c . 

ii)  Here ( ) 3 , ( ) 1f a f b   and   ( ) 3f c .   f is not one to-one  since  ( ) ( )f a f c   but  

a c . 

It is not onto since  2 B   but ( ) 2f x    for all  x A .(  or  since range of f
{1 ,3} B f  is not onto.) 

 

Exercise 

1. Why is f  not a function from   to    ,if      

21
) ( ) , ) ( ) ) ( ) 1i f x ii f x x iii f x x

x  
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2.Determine whether  f  is  a function   from       to   if 
2

2

1
) ( ) ) ( ) 1 ) ( )

4
i f n n ii f n n ii f n

n

. 

3. Let {1,2,3, }A a     and { , ,2,3,4}B a b  .Which of the following   sets are relations  

from  A  to B .? from  B to A ?. 

) {(1,2), (3, ) ,(1, )} ) {(2,2), (3,3), ( ,4), ( ,4)} ) {(2,4), (( , ),( ,3)}i b a ii a a iii a a b . ) {(2.3), (3,4), ( ,1) }iv a . 

4.Let {2, 3, 4, }A a      and { , , , 2, 3}B a b d . Which of the following relations define a 

function from A  to  B .           ) {(2,2) , (3,3), ( , ), (4,3)} ) {(2, ), (3. ), (4, ), ( , )},i a a ii b b b a b

) {( . ), (3, ), (4,3), (2,2) ,(3,3)}iii ab d ) {(2,3), (3,4), ( , )}iv a b . 

5.Determine whether each of these function from { , , , }a b c d   to itself is one-to-one ? 
on to? 

) ( ) , ( ) , ( ) , ( )i f a b f b a f c c f d d ) ( ) , ( ) , ( ) , ( )ii f a b f b b f c d f d c

) ( ) , ( ) , ( ) , ( )iii f a d f b b f c c f d d . 

Inverse Function and composition of functions 

Definition. Let :f X Y  be a one to one correspondence (bijective). 

The inverse of the function f  is the function  that assigns to an element y Y the 
unique element x X   such that  ( )f x y .The inverse function of f   is denoted  by 
1

f . 

Thus we have 1( )f y x   whenever  ( )f x y   and 1 :f Y X . 

From the definition, we have 1( ( ))f f x x     for all  x X  and 1( ( ))f f y y   for all  
y Y . 

If f  is bijective  we say  it is invertible. 

Remark. If f  is not one to one correspondence then we cannot define  inverse 
function. 
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Example. Let : { , , } {1 ,2 ,3}f a b c   be given by ( ) 2 , ( ) 3 , ( ) 1f a f b f c .Is f  invertible? 

If so find   

1
f . 

Solution. It is easy to see that f  is bijective. Thus f  is invertible . 
1 : {1 ,2 ,3} { , , }f a b c   is  given by 1 1 1(1) , (2) , (3)f c f a f b . 

Example  Let :f    be given by ( ) 2 3f x x . Is f  invertible? If so find  a 
formula   for 1

f . 

Solution. We must show   f   is bijective , that  it is  one-to one and onto. 

I) To show f  is one -to-one. Suppose ( ) ( )f x f y  .We have  to show  x y . 

( ) ( ) 2 3 2 3 2 2f x f y x y x y x y . Thus f  is one –to-one. 

ii) to show  f   is onto. Lety . We must find x   such that ( )f x y . 

3
( ) 2 3 2 3

2

y
f x y x y x y x  

If we take 3

2

y
x   then 3 3

( ) ( ) 2( ) 3 3 3
2 2

y y
f x f y y . Thus f  is onto. 

From  (i) and (ii)  f   is bijective. Hence f  is invertible. 

To  find 1
f . Let   ( )f x y   so that 1( )f y x . We have  

3
( ) . 2 3 2 3

2

y
f x y x y x y x . Thus  

1 3
( )

2

y
f y .(Hence 1 3

( )
2

x
f x  replacing  y   by x ) 

Definition Let. :f A B   and  :g B C . The composition of  g   and f   denoted by
gof  is defined by  

( )( ) ( ( ))gof x g f x      for all x A . 
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Note.gof  is a function from A   to C . 

Range of f   must be a subset of  the Domain of g . 

Example Let : { , , } { , , }f a b c a b c   be given by ( ) , ( ) , ( )f a b f b c f c a   and 

: { , , } {1 , 2 ,3}g a b c   where  ( ) 3 , ( ) 2 , ( ) 1g a g b g c . Find gof . 

Solution  . gof  is defined  by 
( )( ) ( ( )) ( ) 2 , ( )( ) ( ( )) ( ) 1 , ( )( ) ( ( )) ( ) 3gof a g f a g b gof b g f b g c gof c g f c g a . 

Note fog   is not defined since the range of g  is not a subset of the domain of f . 

 Example .Let , :g f   be defined by ( ) 2 3 , ( ) 3 2f x x g x x .  

i)  Find   ( )(2) , ( )( 1)gof fog . 

ii)  Find the function s   fog    and  gof . 

Solution  .i)  ( )(2) ( (2)) (7) 21 3 24 , ( )( 1) ( ( 1)) ( 1) 1gof g f g fog f g f . 

ii)  ( )( ) ( ( )) (2 3) 3(2 3) 2 6 9 2 6 11gof x g f x g x x x x  

  Remark .  From the above example  we see that  fog gof   ,that is composition of 
functions is not commutative. 

Note.  1.Suppose :f A B   is invertible, that is, 1 :f B A   exists. We have  

1( ) ( )f a b f b a .Th.us 1 :fof B B   and 1 :f of A A. Moreover 

1 1( )( ) ( ( ) ( )fof b f f b f a b   for every b B , Hence   1
B

fof . 

1 1 1( )( ) ( ( )) ( )f of a f f a f b a  for every   a A ,Hence   1
A

f of . 

2,  Suppose : , : , :f A B g B C h C D .Since  :gof A C  ,we have  

( ) :ho gof A D ,  and ( ( ))( ) (( )( )) ( ( ( ))ho gof a h gof a h g f a . 



49 
 

We can see that ( ) ( )ho gof hog of   that is composition of functions is associative 

 

Chapter Four.   Further  properties Realtion 

We need the following  properties about division on integers since some of the 
examples provided in this chapter depend on integers. 

 
Definition   If   a  and   b are integers with 0a  . we say  that a   divides b   if there is  an 
integer c   such that  b ac  or equivalently  if  b

a
 is  an integer.. When a   divides b    

we  say that a  is a factor of b  or a divisor of b  and that  b  is a multiple of a . The 
notation a b  denotes thata   divides b . 
 
: Let a, b, and c be integers, where 0a . Then 
(i ) if a | b and a | c, then a | (b + c); 
(ii ) if a | b, then a | bc for all integers c; 
(iii ) if a | b and b | c, then a | c 
 

 

Relation on a set. 

Recall that : 

Definition.  A relation   on a set A   is a relation from A   to  A .That is , a relation on 
a set A  is a subset A A . 

Example . Let  {1 ,2 ,3 ,4}A . Write the elements of the relation {( , ) : }R a b a divide b  

on the set A . 

Solution. ( , )a b R  if and only if ,a b A   and a   divides b . Thus  

{(1,1) ,(2,2) ,(3,3) ,(4,4),(1,2) ,(1,3) ,(1,4) ,(2 ,4)}R . 

Example . Consider the following relation on the set  of integers. 
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1 2 3) {( , ) : } ) {( , ) : } ) {( , ) : }i R a b a b ii R a b a b iii R a b a b a b

4 5 6) {( , ) : } , ) {( , ) : 1} ) {( , ) : 3}iv R a b a b v R a b a b vi R a b a b  

Which of these relations  contain each of the ordered pairs   
(1,1) ,(1,2) ,((2,1) ,(1, 1) ,(2,2)? . 

Solution .  (1,1)  belongs  to 1 3 4, ,R R R , and 6R . 

(1,2)   belongs to 1R   ,  6R   ;   (2,1)   belongs to  2 5,R R   and 6R . 

(1, 1)   belongs to 2 3 6, ,R R R      ;  (2, 2)   belongs to 1 3 4, ,R R R . 

How many relations are there on set  of n  elements? 

Solution.     Note that a set with   m   elements has  2m  elements.    A relation on a 
set is A  is a subset of A A . If  A   has n elements  then A A  has   2

n  elements. 
Thus  the number of subsets of A A   (That is the number of relations on the set 
A )  is 2

2n . 

Properties of relations.  

Definition . A relation  R  on  set  A    is called  reflexive   if  ( , )a a R    (  aRa )  for all 

a A  

Example Consider  the following relation on the set  {1,2,3,4}A . 

1

2

3

{{(1,1) ,(1,2) ,(2,2) ,(3,4) ,(4,1) ,(4,4)}

{(1,1) ,(1,2) ,(2,1)}

{(1,1) ,(1,2) ,(1,4) ,(2,2) ,(3,3) ,(4,1) ,(4, 4)}

R

R

R

 

Which of these relations  are reflexive 

Solution.  1R  is not reflexive   since 3 A   but  1(3,3) R . 

2R  is not reflexive   since 2(3,3) R  . 

3R  is reflexive   since 3( , )a a R   for all  a A .   
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Example .On the set of integers   define a relation {( , ) : }R a b a divides b . 

a)  Write  true or false : ) (2,3) , ) (4,2) , ) (8 ,16)i R ii R iii  

b).Is  R  reflexive? 

Solution. a)   i)  false    ii)  false    iii)   true 

b)   No  , since 0    0 divides 0 is false    (0,0) R . 

Example .On Z   we define a relation {( , ) :R a b a  is a multiple  of b}. 

a) Write true or false . )(6,2) , ) (5,3) , ) ( 8,4)}i ii iii  

b) Is  R   reflexive? 

Solution . a)  i)  True since   6   =    3.2        ii) false         iii)    True since   -8   =  (-2).4 

b) Since for any     a Z       we have  1.a a   , that is a is a multiple of itself,   
( , )a a R . Hence  

R   is reflexive. 

Definition.  I)  A relation  R   on a set A    is called symmetric  if ( , )b a R   whenever 
( , )a b R . 

   ii) A relation  R   on a set A    is called   anti symmetric if ( , )a b R   and ( , )b a R   
then a b . 

Example. Let  { , . }A a bc . Which of the following relations on  A  are symmetric? 

1

2

3

{( , ) ,( , ) ,( , ) ,( , )}

{( , ) ,( , ) ,( , )}

{( , ) ,( , ) ,( , ),( , )}

R a a b c a b c b

R b b c c a a

R c a a b a c b a

 

Solution.  1R  is not symmetric  since  1( , )a b R   but 1( , )b a R . 

2R   and  3R    are symmetric. 
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Example On the set    define a relation  {( , ) : / }R a b a b . (a/b means a divides b  
,that is, b   =  k.a  for some integer k.) 

 Is R   symmetric ?antisymmetric    ?  reflexive? 

Solution. R  is not symmetric since  (1 ,2) R  but (2 ,1) R   since 2 does not divide 1. 

To check for anti-symmetric :Suppose ( , )a b R   and ( , )b a R . To show a b . 

Since( , )a b R   and ( , )b a R   we have  b ka   and  a mb   for some  ,k m . Thus  

we get  

1 1b kmb km m k . Hence a b . 

Since for  any  a /a a   is true   we have   ( , )a a R . Thus R   is reflexive. 

 

Definition. A relation R  on  a set A  is called transitive if  whenever   ( , )a b R    and   
( , )b c R   then ( , )a c R . 

 Example Which of the following relations on the set  {1,2,3,4}A are  transitive? 

1

2

3

{{(1,1) ,(1,2) ,(2,2) ,(3,4) ,(4,1) ,(4,4)}

{(1,1) ,(1,2) ,(2,1)}

{(1,1) ,(1,2) ,(1,4) ,(2,2) ,(3,3) ,(4,1) ,(4, 4)}

R

R

R

 

Solution  1R  is not transitive since 1(3,4) R   and 1(4,1) R    but  1(3,1) R . 

2R   is transitive. 3R  is not transitive since 3(4,1) (1,2R R   but (4,2) R . 

Example .Let {( , ) : / , , }R a b a b a  , Show that  R  is transitive. 

Solution. Suppose ( , )a b R   and ( , )a b R   .To show ( , )a c R . Since  

( , ) ( , )a b R b c R b ka c mb   for  some  ,k m .Thus we get 

( ) ( )c mb m ka mk a na   ,   where n mk .Therefore /a c . Hence ( , )a c R . 
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 Equivalence relation. 

Definition .A relation  on  a set   A   is called an equivalence relation if it is reflexive 
,   symmetric  and transitive. 

Definition. Two elements a   and b   that are related by an equivalence relation   
are called  equivalent and we write  a b . 

Example.  Let {1,2,3}A  . which of the following  relations on  A     are equivalence 
relation? 

1

2

3

{(1,1) ,(1,2), (2,2) ,(3,1) ,(3,3) ,(3,2)}

{(2,2) ,(2,3) ,(1,1) ,(3,3) ,(3,2)}

{(1,1) ,(2,2) ,(3,3)}

R

R

R

 

Solution. 1R  is not an equivalence relation since it is not symmetric  we see 

1(1,2) R  but 1(2,1) R .  2R    and  3R    are  reflexive  , symmetric and transitive  and 
hence an equivalence relation 

 

Example.    Let {( , ) : , , }R a b a b a b a b . Show that R  is an equivalence  

relation on . 

Solution. We have to show R  is   i) reflexive   ii)  symmetric   and  iii)  transitive. 

Note that  ( , )a b R  if and only if  ,a b   and a b   or a b  , that  is  , a b . 

To show  R is reflexive 

 (i) For  every a    , ( , )a a R    since    a a   is true. Hence   R   is reflexive. 

ii)     To show R  is symmetric :suppose  ( , )a b R . Then   a b  or a b . This implies   
b a   orb a . Thus by definition  of R ( , )b a R . Hence  R  is symmetric. 

iii) To show  R is transitive : suppose  ( , )a b R   and( , )b c R . To show ( , )a c R . 
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Since ( , )a b R   ,  and ( , )b c R   we have  a b b c  .which implies ( )a c c . 
Thus ( , )a c R . Hence  R  is transitive, 

From (i)  ,  (ii)  and (iii)  we conclude that  R  is an equivalence relation. 

Example. Let  {( , ) : / , , }R a b a b a b . Is R  an equivalence relation on . 

Solution. No. since it is not symmetric  . (2,4) R     but (4,2) R   since   4 / 2  is false.  

Example  Let R    be relation on the set of real numbers     and {( , ) : }R a b a b . 
Show that R  is an equivalence relation. 

Solution. We have to show R  is   i) reflexive   ii)  symmetric   and  iii)  transitive. 

i)  Reflexive : since for all real  number a   , 0a a  is true   R     is reflexive. 

ii )  Symmetric): Suppose ( , )a b R   . We have  

( )a b a b b a . Thus ( , )b a R . Therefore   R   is symmetric. 

iii)  Transitive :  ( , ) ( , )a b R b c R . To show  ( , )a c R .  We have  

( , ) ( , ) ( ) ( )a b R b c R a b b c Z a b b c a c . Thus ( , )a c R . 

R   is transitive. 

From (i)  ,(ii)   and (iii)    R   is an equivalence relation. 

Example . Congruence Modulo m . Let , 1m m . 

We write   (mod )a b m   if and only if  m a b   that is m   divides  a b . 

Example . Let {( , ) : (mod5)}R a b a b . 

Write true or false. 

) (10,5) ) (12,2) ) (15,6)i R ii R iii R . 

Solution.  i)  True . since 5 (10 5)      ii)  True,  since 5 (12 2)    iii) False  ,since 

5 (15 6)  is false. 



55 
 

Example. Let  {( , ) : (mod )}R a b a b m . Show that  R   is an equivalence relation for  
any 1m   , m . 

Solution. i)  Reflexive   :Since  0.a a m  for any  a   we have  (mod )a a m  Thus , 
( , )a a R .So  it isreflexive. 

ii)  Symmetric : If Suppose   ( , )a b R . To show ( , )b a R . 

( , )a b R a b km   for some k  

( )b a k m                                            where   c k . 

(mod )b a m  

Thus ( , )b a R . Hence  R  is symmetric. 

iii)Transitivity: Suppose  ( , ) ( , )a b R b c R   ( )aRb bRc ) .To show    ( , )a c R   (bRc ) 

)aRb bRc a b km b c cm   for some ,k m . 

( ) ( )a b b c km cm  

( ) ( ) ( )a b b c k c m  

b c dm    where   d k c . 

(mod )b c m  

     Hence  bRc .    R   is transitive .From  (i)  ,(ii)  and (iii)  R  is an equivalence 

relation. 

Example  Show that the relation  {( , ) : , , }R a b a b a b  is not an equivalence 

relation. 

Solution  .It is not symmetric .since  2 4 is true  but 4 2   is false. 

Equivalence Classes. 
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Definition.  Let   R   be a relation on a set  A . The set of all elements in A   that are 
related to an element  a  of  A   is called an equivalence class of a    with respect to 
R . It is denoted by [a]. 

Thus  

{ : } { : ( , ) }a b aRb b a b R . 

If b a      then  b   is  called  a representative of  the equivalence class determined 

by a. 

Note. a   since  a a . 

Example .The relation {(1,1) ,(2,2) ,(3,3) (3,1) ,(1,3)}R   on the set  {1,2,3}  is an 

equivalence relation. Find. ) 1 ) 3 ) 2i ii iii  

Solution
) 1 { : (1, ) } {1,3} ) 3 { : (3, ) {1,3} ) 2 { : (2, ) } {2}i b b R ii b b R iii b b R  

Example .Let {( , ) : }R a b a b a b   be a relation on the set of real numbers. 

We have seen R  is an equivalence relation.  Find  2
) 1 ) ) ,

3
i ii iii a a  

Solution
2 2 2 2 2

) 1 { : ( 1, ) } { : 1 1 } { 1,1} ) { : } { , } ) { , }
3 3 3 3 3

i b b R b b b ii b b b iii a a a  

Theorem .Let R  be an equivalence  relation  on a set  A . The following statements  
for elements  ,a b  of A are equivalent. 

) ) )i aRb ii a b iii a b  

Proof. to prove ( ) ( )i ii . We assume  (i)  is   true . If x a   then xRa .  Thus   we 

have xRa aRb .Since R  is transitive xRb  . Hence x b . 

a b .   In the same way    one can show b a . Thus a b . 
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To show ( ) ( )ii iii  . Assume a b   .Since a a     we have a a b . Thus 

a b . 

To Show  ( ) ( )iii i . Assume a b .To show aRb .  Let c a b . ThenaRc bRc  

By symmetric  cRb . Thus  we  have  aRc cRb     Thus  ,since  , R   is  transitive   aRb . 

Thus we have proved ( ) ( ) ( ) ( )i ii iii i .  Thus all the statements are equivalent. 

Remark.  1. The Theorem shows  two equivalence classes are either equal or 
disjoint. That is  

 either      a b         or                  a b   

2.  Since a a   for each  a A . It follows that  
a A

A a . 

3. The equivalence classes  split  the set A  in to disjoint  subsets. 

Partition of a set. 

Definition. A partition of a set   S is a collection of  nonempty disjoint subsets  of S   
that have S as their union.. 

Example . Let {1,2,3,4,5}S . Let 1 2 3{1,2} {3.4} {5}A A A  .The  set 1 2 3{ , , }A A A  

Is a disjoint collections of subsets of S  Their  union  1 2 3A A A S . 

Thus 1 2 3{ , , }A A A is  partition of the set S. 

Remark.  1. The distinct equivalence classes of an equivalence relation form a 
partition of A. 

            2. If  S  is a a partition of a set A    then  there is an equivalence relation R  
on A  that the sets  in S   as its equivalence class The relation  R  on  A   is defined 
as follows : aRb  if and only if  a and b  belong to the same set  in S . 

Example.  Let  {1,2,3,4}A  and   {(1,1) ,(1,2) ,(2 ,2) ,(3,3) ,(4,4)}R . Find the 

equivalence classes..  
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Solution 

[1] { : 1 } {1,2} [2]

[3] {3} [4] {4}

x Rx  

{[1] , [3] .[4]}S  is a partition of the setA .  [1] [3] [4]A . 

Example. The relation  {( , ) : mod(3)}R a b a    on is an equivalence relation. Find 
the equivalence classes of R . 

Solution. Fora  , 

[ ] { : mod(3)} { : 3 } { : 3a b a b b b a b b a m    for  some  m }  

{ : 3 , }b b a m m . 

Thus      [ ] 3b a b a m m . 

For 0a   we get 

[0] { : 3 , } { , 6, 3,0,3,6, }b b m m  

For 1a   we get 

[1] { : 1 3 , } { , 5 , 2 ,1 ,4,7, }b b m m  

[2] { : 2 3 } { , 4 , 1,2,5,7, }b b m . 

 It is not hard to see that these are the only distinct equivalence  classes of  R . 

The set {[0] ,[1] ,[2]}  is a partition of . 

[0] [1] [2  

Example . Let 1 2 3{1,2,3} {4,5} {6}A A A  . 1 2 3{ , , }A A A  be a partition of {1,2,3,4,5,6}

. 

List the ordered pair in the equivalence relation R produced by the partition. 

Solution. The  subsets in the partition are the equivalence classes  of R . 
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Thus   {(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(4,4),(5,5),(4,5),(5,4).(6,6)}R  

Exercise 

1. List  the order pairs in the  relation R  from  {0 ,1 ,2 ,3 ,4}A   to  {0 ,1 ,2 ,3 }B  

where 

) {( , ) / ) {( , ) / 4} ) {( , ) / } ) {( , ) / }i R a b a b ii R a b a b iii R a b a b iv R a b a divides b  

2. List all the order  pairs   in the relation {( , ) / }R a b a divides b   on the set  

{1 ,2 ,3 ,4 ,5 ,6} . 

3.For each of these  relation on the set  {0 ,1 ,2 ,3 ,4}A  decide whether it is 

reflexive  , symmetric, anti - symmetric  and transitive. 

i)  {(2,2) ,(2 ,3) ,(2,4) ,(3,2) ,(3 ,3) ,(3,4)} ){(1,1) ,(1,2) , (2,1) ,(2,) ,(3,3), (4,4)}ii ){(2,4) ,(4,2}iii  

){(1,2) ,(2,3) ,(3,4)}iv ) {(1,1) ,(2,2) ,(3,3) ,(4,4)}v ){(1,3) ,(1,4) ,(2,3) , (2,4) ,(3,1) ,(3,4)}v . 

4.Determine whether  the following relation s  on the set of real numbers are 
reflexive   , symmetric , anti -symmetric  and transitive  . 

1 2 3 4 5) {( , ) / 0} ) {( , ) / } ) {( , ) 0 / 2 } ) {( , ) / 0} ) {( , ) / 1}i R x y x y ii R x y x y iii R x y x y iv R x y xy v R x y x

5 .Determine whether  the following relation s  on the set of  integers are reflexive   
, symmetric , anti-symmetric  and transitive  . 

2
1 2 3 4 5) {( , ) / } ) {( , ) / 1 1} ) {( , ) / (mod7)} ) {( , ) / } ) {( , ) / }i R x y x y ii R x y x y or x y iii R x y x y iv R x y x is a multiple of y v R x y x y

 

6. Show that  the relation      {( , ) / int }R x y x y is an eger is an equivalence relation 

on the set of real numbers. And find 1
) [1] )

2
i ii . 

7, Show  that the relation   {( , ) / }R m n m n or m n    is an equivalence 

relation on the set of integers  and find  [0] , [1] . [ ]n n  

8,.Let  { / : }A f f  . Show  that  the following  relations on A is an 
equivalence relation. 
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) {( , ) / (1) (1)} ) {( , ) / (0) (0) (1) (1)}a f g f g b f g f g or f g  

9)Let {( , ) / , }A a b a b   .Show that the following relations  on  A  are 

equivalence relations. 

1 2) {(( , ) ,( , )) / } ) {(( , ) ,( , )) / }i R a b c d ad bc ii R a b c d a d b c  

10.  Consider  (mod4)a b   .Find  [ 0], [1] , [2]. 
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Chapter Five.  Binary Operations. 

Definition. Let  A   be  a set . A binary operation  on A   is a function fromA A   to  
A . That is ,  is a binary operation on A  if  

  :  A A A . 

We write a b   for (( , ))a b . 

Example. 1. :   given by  (( , ))a b a b  is a binary operation on  .That 
is the operation addition on   is a binary operation. 

2.  :   defined by (( , ))a b a b  is a binary operation  on . That is , the 
operation  subtraction is a binary operation on . 

Here (( , ))a b a b a b . So 3 5 3 5 2 . 

3.  Subtraction is not a binary operation on . For example   3 5 3 5 2 . 
In this case we say   is not closed under (the operation) subtraction. 

4. Let A   and ( )A   be the power set of  A   .The  operation   union “ ” and 
intersection " "  are binary operations on the power  set  ( )A   of A . 

5. Let   P   be the set of all propositions ..The logical connectives  “and”  ( )  and 
“or”( ) are binary operations on P . That is  

: P P P   given by  (( , ))p q p q        ;   : P P P    given by  (( , ))p q p q  

are binary operations onP . 

6.Let  {1,0}A     . Define  

((0,0)) 0 0 0 , ((0,1)) 0 1 1

((1,0)) 1 0 1 , ((1,1)) 1 1 1
 

is a binary operation  on A  , that is it is a function from A xA to A. 
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We illustrate     by a  table below : 

 0 1 
0 0 1 
1 1 1 
 

Example .  Let  {1,2,3}S .       Define       and         as follows.           

 

 

 

 1 2 3 
1 1 1 2 
2 3 3 1 
3 3 1 2 
 

Find  ) 1 1 , ) (1 1) 3 ) (1 1) 1 ) (3 2) 3i ii iii iv  

Solution. Note   and       are binary operations  on S . 

i) 1 1 1         ii)    (1 1) 3 1 3 2         iii) (1 1) 1 1 1 1     iv)    (3 2) 3 1 3 2 . 

Example Let   be a binary operation  on    defined by 2a b b a . 

Find   ) 2 3 ) 4 3 ) 3 4 ) (1 ( 3)) ) (2 1) 3i ii iii iv v . 

Solution.  ) 2 3 2.3 2 8 ) 4 3 2.3 4 10i ii

) 3 4 2.4 3 11 ) 2 (1 ( 3)) 2 ( 5) 10 2 8iii iv

) (2 1) ( 3) 4 ( 3) 6 4 2v  

 

Definition. (Identity element)   Let    be a binary operation on a set A . An 
element  e A  is an identity element for    if  e a a a e   for all  a A . 

 1 2 3 
1 1 1 2 
2 2 3 3 
3 3 2 1 
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Example. 1.   0 is an identity element for addition on . 

                   2.   1 is an identity element for multiplication . 

                   3.There is no identity element for subtraction  on . To see   this 
,assume  there is e  such that 

a e a e a   for all a A . Then with 1a   we get   

1 1 1e e   .That is  

1 1e    and  also 1 1e 0e   and  2e  , which is false. 

Hence There is no identity element for subtraction  on . 

3. Consider the power set ( )P A   of a set  A .  Since  

B B B      for  all ( )B P A ,    is an identity  element for the binary 
operation  . 

A B B B A   for  ( )B P A  ,  A  is an identity element for the binary operation  
. 

 Theorem  (Uniqueness of identity element)  

Let   be a binary operation on a set A . If  e   and f   are identity  element  for . 
Then e f . 

Proof. Since e  is an identity element , f e f  . Again since  f  is an identity 
element    we have e f e  .Thus  e   =   f. 

 

Definition.(Inverse). Let   be a binary operation on a set A  and has an identity 
element   e  for .  Let x A . We say an  element y  of A  is an inverse for x   if  

x y e y x . 

In this  case we say  x  is invertible. 
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Example  1. Addition (  +) on  .Every element x  in    has an inverse  under 
addition ,namely  x . 

   2.  Multiplication on  :  1  is only element  that has an inverse for multiplication  
and its inverse is   1  since 1.1=1. 

3.Multilpication on  : Every element 0x  of  has a n inverse for multiplication 

, namely  1
x

. 

Definition. Let   be a binary operation on a set A . We say 

1.  is associative if for   all  elements   , ,a b c   in A ,  ( ) ( )a b c a b c . 

2.  is commutative if  for all elements  ,a b    inA  ,  a b b a . 

Example. 1.    and   . are     associative  binary operations on  . 

2.Let  {1,2,3}A  and let   be defined by the following table 

 1 2 3 
1 3 1 2 
2 1 2 3 
3 2 3 1 
a )  Is    commutative ? 

b) What  is the identity element for ? 

c.) Which element s   of  A  are invertible under   

Solution.  a) Yes  ,(Check that it is symmetric with respect to the diagonal) 

1 2 2 1 , 1 3 3 1 ,2 3 3 2 .. 

b)   2 is the identity element. (the elements in the row along 2 and the elements 
in  the column under 2 are the same.) 

c.   all are invertible. 
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Theorem. Let    be an associative  binary operation on a  A set  with identity 
element e . If x A  has an inverse under   , then its inverse  is unique. That is if y   
and z   are inverses  of  x   then y z . 

Proof. by the definition of inverse x y e y x    and x z e z x . 

( ) ( )y y e y x z y x z e z z   (Since  is associative and e  is the identity 
element  ) 

      y z . 

Example. Determine whether  is associative  ,commutative operation  on . 
Check for identity element. 

2) , ) 2 2 ) 3i x y x y x y ii x y x y iii x y x y  

Solution. 

) 2 2 ) 3i x y x y ii x y x y  

Solution  .i) 2 2x y x y  

a)to check  is associative. We calculate ( )x y z    and ( )x y z .  

( ) (2 2 ) 2 2(2 2 ) 2 4 4x y z x y z x y z x y z  

and ( ) (2 2 ) 2(2 2 ) 2 4 4 2x y z x y z x y z x y z . 

( ) ( ) 2 4 4 4 4 2 2 2 2x y z x y z x y z x y z x z z x z  

Thus if x z  then  ( ) ( )x y z x y z . Hence   is not associative. 

  As a counter example take  1 , 1, 2x y z    .we have  

1 (1 2) 1 (2 4) 1 6 2 2.6 14  

(1 1) 2 (2 2) 2 4 2 2.4 2.2 12  

 Thus   1 (1 2 (1 1) 2 . 
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b)To Check  is commutative  . 2 2 2 2x y x y y x y x .Thus  is 
commutative. 

c. To Check existence of identity element. We know that if there is an identity 
element e it is unique  

Suppose x e x   for all x . Then  

x e x 2 2 2x e x e x  .Thus e  depends on x . that is , e  is not unique. Thus 
 has no identity element. 

ii) 3x y x y . 

a) Associative  

( ) ( 3) ( 3) 3 6x y z x y z x y z x y z  

( ) ( 3) 3 3 6 ( )x y z x y z x y z x y z x y z   for all , ,x y z . 

Thus  is associative. 

b)commutative . 3 3x y x y y x y x    for all  ,x y . 

Thus   is commutative. 

c)Existence of identity. Suppose there is e   such that  x e x   for all x . We 
have, 

3 3x e x x e x e . Thus   3 is the identity element for . 

d) Let x .To find the inverse of x . Suppose  y  is the inverse of  x   .Then we have 

3 3 3 6x y x y y x . Thus the inverse of   x  is  6 x . 

Thus every element in  has an inverse with respect to . 

For example the inverse of 7 is 6-7 = 1. 
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Example .Let {0,1,2, , 1} 1 ,
n

n n n   .We define  
n

   and  
n
 on 

n
  as 

follows 

For  all  ,
n

a b  

   1  .   
n

a b r   where  r is the remainder  obtained when  a b  is divided by  n . 
That is,    a b kn r   for some  k   and  {0,1,2, , 1}

n
r n  

   2. 
n

a b s     where  s   is the remainder obtained when   ab   is divided  by  n  

That  is, ab cn s    for some c   and 0 1s n    (by Division algorithm) 

n
   is  called addition modulo  n   and 

n
  multiplication modulo n    .Both are 

binary operations on  
n

 

As  an example consider  4 {0,1,2,3}   ,  here   4n           .Addition and 
multiplication modulo 4 are given by the tables:                                                                                                   

4  0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 
 

4  0 1 2 3 
0 0 0 0 0 
 1  0 1 2 3 
2 0 2 0 2 
3 0 3 2 1 

42 3 1 since 2 3 4.1 1.  (r  = 1) 

42 2 0   since  2 2 4.1 0   ( r =  0) 

42 1 3    since 2 1 4.0 3   (r =3). 
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Definition.  

1. A semi-group is a set with a binary operation that is  associative. 

2.   A monoid  is a set with a binary operation that is associative and has an 
identity element. 

 That is,  a monoid is a semi-group having an identity element. 

3. A group is a monoid  in which every element  in the set is invertible (has 
inverse) 

Example .   

1. {1,2,3, ,}  under addition is  a semi-group but not a monoid. 

2.  under multiplication is  monoid but not a group. 

3.  under multiplication is a monoid but not a group. 

4. under addition is  a group. 

5.  under addition is group. 

6.  
n

  under addition modulo n is a group  . 

Exercise 

1.  Determine which of the following are  monoid , groups. 

a) The set  {-1  ,1} under multiplication. 

b)The P(A) under union  and   A . 

c) The P(A)  under intersection   and A . 

d)  , under   where 1a b a b  

2.Give  an addition and multiplication table for 5 . 
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3. Let G be the set of all functions :f . Show  the G together with the usual 
addition functions is a group.  Show that is not   a group under multiplication of 
function. 

 

 

 

 

 

 

 

 

 

 

 


